Mainori Kõrgkool Matemaatika ja statistika Loengukonspekt Silver Toompalu, MSc 2008/2009 1 Matemaatika ja statistika 2008/2009 Sisukord 1 Mudelid majanduses ............................................................................................................. 4 1.1 Mudeli mõiste .......................................................
4. Ühe muutuja funktsiooni diferentsiaalarvutus Majandusanalüüsi korral uuritakse majandusalaste suuruste vahelisi seoseid, mis on kirjeldatud funktsionaalse sõltuvusena. Toome näiteks mõningad probleemid, mida võib uurida majandusanalüüs: · Kas toodangu hinna suurendamisel ettevõtte kasum suureneb või väheneb? · Millisel määral võivad kapitalimahutused asendada lisatööjõudu? · Millise tootmismahu juures on kulu tooteühiku kohta kõige väiksem? · Kui tundlik on hüvise nõudlus hinna muutustele? · Kuidas mõjutab maksude suurendamine laekumisi riigieelarvesse? Vastuste leidmiseks nendele küsimustele konstrueeritakse algul vastavad mudelid ja siis uuritakse neid diferentsiaalarvutuse meetodite abil. Ülesannete liigitus 1. Optimeerimisülesanded. Majandusalases tegevuses tuleb tihti analüüsida, millal on tootlikkus maksimaalne, kasum maksimaalne, kulud minimaalsed jne. Maksimumi ja miinimumi leidmist nimetat
Ühe muutuja funktsioonid 2 Ülesanded iseseisvaks lahendamiseks Vastused Q 2 1.Kulufunktsioon on C(Q) = 600 + 4Q + 200 ning tulufunktsioon R(Q) = 20Q, kus Q on tootmismaht. Leida M C(8) ja M R(4). Leida püsikulu ja muutuvkulu, kui Q = 10. Leida ka tooteühiku hind. Q Lahendus: M C = C (Q) = 4 + 100 . M C(8) = 4.08. Toodangu suurendamisel kaheksast tooteühikust üheksa tooteühikuni suurenevad kulud 4.08 rahaühiku võrra. M R = R (Q) = 20. Nagu näha MR ei sõltu toodangu hulgast. Toodangu suurendamisel ühe ühiku võrra tulu suureneb alati 20 rahaühiku võrra. Kulufunktsiooni vabaliige on 600, mis ongi püsikuluks (see ei sõltu toodanguhulgast Q). Q2 102 Muutuvkulu avaldub kujul T V C(Q) = 4Q + 200
MAATRIKSALGEBRA 1. Maatriksi mõiste ja liigitus Maatriksiks nimetatakse ristkülikukujulist elementide tabelit, mis koosneb m reast ja n veerust. Maatriksi elemente tähistatakse a ik, kus i näitab, millises reas ja k, millises veerus element asub. Maatrikseid tähistatakse suurte tähtedega A, B, C, . . . Maatriksi üldkuju on: a11 a12 ... a1n a 21 a 22 ... a 2 n A= . . . . . a am2 ... a mn m1 Lühemalt on võimalik maatriksit esitada kujul: A = ( aik ) mn. Maatriksi erikujud: 1. Kui m = n, siis nimetatakse maatriksit ruutmaatriksiks. Ruutmaatriksi võrdsete indeksitega elem
MAATRIKSALGEBRA 1. Maatriksi mõiste ja liigitus Maatriksiks nimetatakse ristkülikukujulist elementide tabelit, mis koosneb m reast ja n veerust. Maatriksi elemente tähistatakse a ik, kus i näitab, millises reas ja k, millises veerus element asub. Maatrikseid tähistatakse suurte tähtedega A, B, C, . . . Maatriksi üldkuju on: a11 a12 ... a1n a 21 a 22 ... a 2 n . . . . a am2 ... a mn A= m1 . Lühemalt on võimalik maatriksit esitada kujul: A = ( aik ) mn. Maatriksi erikujud: 1. Kui m = n, siis nimetatakse maatriksit ruutmaatriksiks. Ruutmaatriksi võrdsete indeksitega elemendid aii moodustavad peadiagonaali
1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): [ ] a = aij A = (aij ) = ij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon suurus). 3 -
Lineaaralgebra elemendid. M.Latõnina 1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): A = (aij ) = [aij ] = aij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon suurus).
Tallinna Tehnikaülikool Informaatikainstituut Tõõ Andmed ja valemid Üliõpilane Õppemärkmik Õppejõud J. Vilipõld Õpperühm Palun täitke tühjad lahtrid MASB11 Harjutused Andmete tüübid Excelis Valemid ja avaldised Funktsioonid Arvandmed, -avaldised ja -funktsioonid Aadressite ja nimede kasutamine valemites Arvavaldised - tehete prioriteedid, funktsioonid Minirakendus "Detailike" - ülesande püstitus Minirakendus "Detailike" - aadresside kasutamine Minirakendus "Detailike" - nimede kasutamine Pildi hind Loogikaandmed, -avaldised ja funktsioonid Võrdlused ja loogikatehted IF-funktsioon Funktsioonid Palk & Kauba hind Viktoriin_1 Tekstandmed, -avaldised ja funktsioonid Ajaandmed, -avaldised ja -funktsioonid Ülesanded Kolmnurga karakteristikud Prisma silinder Arvvalemid Ruutvõrrand Intressi arvutamine Pall Ideaalne inimene Viktor
Kõik kommentaarid