Ühe muutuja funktsioonid 2 Ülesanded iseseisvaks lahendamiseks Vastused Q 2 1.Kulufunktsioon on C(Q) = 600 + 4Q + 200 ning tulufunktsioon R(Q) = 20Q, kus Q on tootmismaht. Leida M C(8) ja M R(4). Leida püsikulu ja muutuvkulu, kui Q = 10. Leida ka tooteühiku hind. Q Lahendus: M C = C (Q) = 4 + 100 . M C(8) = 4.08. Toodangu suurendamisel kaheksast tooteühikust üheksa tooteühikuni suurenevad kulud 4.08 rahaühiku võrra. M R = R (Q) = 20. Nagu näha MR ei sõltu toodangu hulgast. Toodangu suurendamisel ühe ühiku võrra tulu suureneb alati 20 rahaühiku võrra. Kulufunktsiooni vabaliige on 600, mis ongi püsikuluks (see ei sõltu toodanguhulgast Q). Q2 102 Muutuvkulu a...
Kahe muutuja loogikafunktsioonid,Karnaugh,McCluskey Mitu erinevat 1muutuja loogikafunktsiooni on olemas? 4 erinevat. Tabel lk 174 Milline on ainus oluline 1muutuja loogikafunktsioon? Inversioon Kuidas võib nimetada 0 muutuja loogikafunktsiooni? Konstant 1 või konstant 0 Mitu erinevat 2muutuja loogikafunktsiooni on olemas? 16, tabel lk 175-176 Millised 2muutuja funktsioonid sõltuvad mõlemast oma muutujast? F1,f2,f4,f6,f7,f8,f9,f11,f13,f14 Milline erinevus on implikatsioonil ja pöördimplikatsioonil? Implikatsioonil on x1-x2 seos, pöördimplikatsioonil vastupidi, x2-x1 Mis on Pierce´i nool? F8, on disjunktsiooni inversioon ja esitatakse märgiga pierci nool. Vt lk 177 Mis on Shefferi kriips?...
Nii saame kokkuvõtlikult kirjutada, et y= f[(x)]. Sellist põhimõtet saab kasutada ka integreerimises, kui meil on funktsiooni f(x) integraal f(x) dx , aga me ei saa integraali otseselt leida, kuna meil on tegemist liitfunktsiooniga ja suurus x sõltub omakorda mingist teisest suurusest. Sel juhul teeme integraalis kõigepealt muutuja vahetuse ja lahendame integraali kõigepealt ,,uue" muutuja järgi. Asendame x-i avaldise x=(t) Võtame eelduseks, et x=(t) on pidev funktsioon, millel leidub ka pöördfunktsioon. Kuna integraalis on vaja avaldada ka diferentsiaal dx, siis teeme seda: diferentsiaal on tuletise ja argumendi muudu (argumendi diferentsiaali) korrutis: järelikult on suurus dx = '(x) dt. Igal juhul tõestame, et muutuja vahetuse korral, kus x=(t), kehtib seos: f(x) dx = f[(t)]'(t)dt...
Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m vaheline kaugus d (P, Q ) valemiga d (P, Q ) = (x - y i ) , siis nimetatakse seda ruumi...
LTMS.00.022 ÜHE MUUTUJA MATEMAATILINE ANALÜÜS Loengukursus Tartu Ülikooli loodus- ja täppisteaduste valdkonna üliõpilastele 2019./2020. õppeaasta Toivo Leiger Joonised: Ksenia Niglas Pisitäiendused 2016–20: Märt Põldvere, Natalia Saealle, Indrek Zolk, Urve Kangro 2 Sisukord...
1 1) Mis on funktsioon? Mis on sõltumatu muutuja , sõltuv muutuja? Eeskirja, mis seab sõltumatu muutuja igale väärtusele vastavusse sõltuva muutuja mingi ühe kindla väärtuse, nimetatakse funktsiooniks. Sõltuv muutuja - Valemis muutuja, mille väärtus sõltub ühest või enamast teisest muutujast. Sõltumatu muutuja - Valemis iga muutuja, mille väärtus ei sõltu ühestki teisest muutujast. 2. Mis on funktsiooni määramispiirkond muutumispiirkond? Mis on funktsiooni loomulik määramispiirkond? Funktsiooni määramispiirkond - valemina antud funktsiooni argumendi x selliste väärtuste hulk, mille korral on võimalik funktsiooni f(x) väärtust välja arvutada. Funktsiooni muutumispiirkond - muutuja y kõigi väärtuste hulk....
tema väärtus programmi töö ajal võib muutuda (sellest nimigi) TINGIMUSLAUSE on programmi juhtkonstruktsioon, mis võimaldab vastavalt etteantud loogilise avaldise väärtusele suunata programmi täitma kas üht või teist programmiharu. MÄÄRATUD KORDUS on korduslause, mille korral kirjutatakse programmi konkreetne arv, mitu kordust on vaja teha. Määratud kordusega on harilikult seotud üks muutuja , mida nimetatakse KORDUSE LOENDURIKS. EELKONTROLLIGA KORDUS on korduslause, mille korral täidetakse etteantud tegevust seni, kui esitatud tingimus on täidetud. Tingimust kontrollitakse ENNE tegevuse täitmist. JÄRELKONTROLLIGA KORDUS on korduslause, mille korral täidetakse etteantud tegevust vastavalt PÄRAST tegevust esitatud tingimusele. Protseduur on keele konstruktsioon, mille abil võib sooritada programmi osadeks jaotamist ja korduvalt kasutatava tegevuse defineerimist...
Avaldist kujul F(x) + C, kus F(x) on funktsiooni f(x) mingi algfunktsioon ja C on suvaline konstant (integreerimiskonstant), nim funktsiooni f(x) määramata integraaliks ja tähistatakse f ( x)dx = F ( x) +C Kui f-il f(x) leidub hulgal X algfunktsioon, siis f-il f(x) eksisteerib määramata integraal (hulgal X). Muutujate vahetus määramata integraalis: f(x)dx Integraali avaldamisel asendusvõttega tehakse selle integraali all muutuja vahetus. Selleks valitakse mingi funktsioon u = (x) ja integreerimine muutuja x järgi asendatakse integreerimisega muutuja u järgi. Eeldame, et on üks ühene ja diferentseeruv. Tähistame funktsiooni pöördfunktsiooni -ga. Seega x = (u) . Paneme kirja funktsiooni tuletise diferentsiaalide jagatisena: dx/ du = '(u). Korrutades seda võrdust du-ga saame dx = '(u)du .Asendame x-i ja dx-i integraali all: f(x)dx =f[(u)]'(u)du ....
a>0 I & III a<0 II & IV Suurust y nimetatakse sõltuvaks suurusest x, kui erinevatele x väärtustele vastavad kindlad y väärtused. · X-sõltumata muutuja · Y-sõltuv muutuja Funktsioon vastavus, mille järgi sõltumatu muutuja igale kindlale väärtusele seatakse vastavusse sõltuva muutuja mingi väärtus Funktsiooni y=f(x) määramispiirkonnaks nimetatakse kõikide selliste muutuja x väärtuste hulka, mille korral saab funktsiooni väärtust y arvutada. (Tähis:X) Funktsiooni y=f(x) muutumispiirkonnaks nimetatakse muutja y kõigi väärtuste hulka.(Tähis:Y) Funktsiooni esitusviisid: valem, sõnaline formuleering, nooldiagramm, graafik, tabel. Funktsiooni nullkohaks nimetatakse argumendi väärtust, mille korral funktsiooni väärtus on null. Võrrand-(f(x)=0)(Tähis:X0)...
1. Diferentsiaalvõrrandi üld- ja erilahend. Väärtus ja raja ülesanne Def 1.1 Võrrandit, milles osalevad sõltumatu muutuja , tundmatu funktsioon ja selle tuletised nim diferentsiaalvõrrandiks. (1.1) F(x, y(), y'(), ...)=0 Kui otsitav funktsioon y sõltub ainult ühest muutujast, siis seda nim harilikuks diferentsiaalvõrrandiks. Kui otsitav funktsioon sõltub mitmest muutujast, siis on tegemist osatuletistega diferentsiaalvõrranditega. Kõrgema järguga tuletis dif.võr määrab ära selle võrrandi järgu. Esimest järku dif võrrand on (1.2) Def 1.2 N-järku dif.võr (1...
käitumisega või enda tegevusega (nt mõni asi jäi küsimata), aga vahel ka endal vestluses tärganud mõtted... Intervjuu vormistamine Kui intervjuu abil hangitakse faktiandmeid, vastajate vahel võrreldavaid kirjeldusi (nt suhtumise väljendamine, võrreldavas küsimuses subjektiivse tähenduse selgitamine, teatud toimingu või sündmuse kirjeldus), mida on kavas kodeerida muutujateks , siis võib vastava info tõsta ka andmefaili muutuja vastab küsimusele, mille kohta andmed saadi, ning iga juhtumi lahtrisse lihtsalt vastav teksti osa....
Lepikult, 2010 Matemaatiline avaldis Matemaatiliseks ehk analüütiliseks avaldiseks nimetatakse eeskirja, mis määrab teatava skalaarse suuruse (ehk avaldise väärtuse) leidmiseks konstantide ja muutujatega sooritatavad tehted ning nende sooritamise järjekorra. Näited 1) 2 52 on matemaatiline avaldis, mille väärtus on 27. 2) r2 on matemaatiline avaldis, mille väärtuse leidmiseks tuleb esmalt leida muutuja r väärtuse ruut ja seejärel korrutada tulemust arvuga = 3,14... 3) log( 5 x 2 sin x) - selle matemaatilise avaldise väärtuse leidmiseks tuleb 1) leida siinus nurgast, mille suurus radiaanides on x; 2) leida muutuja x väärtuse ruut ja korrutada see viiega jne. 4) 32 - lihtsaimaks matemaatiliseks avaldiseks on konstant (arv)....
Kui muutuja x igale väärtusele hulgas X vastab muutuja y üks kindel väärtus, siis öeldakse, et y on muutuja x funktsioon. Asjaolu, et üks muutuja on teise funktsioon, tähistatakse y = f (x), y = y (x), y = (x) jne. Muutujat x nimetatakse seejuures sõltumatuks muutujaks e. argumendiks. Muutujat y, mille väärtused leitakse vastavalt sõltumatu muutuja väärtustele, nimetatakse sõltuvaks muutujaks. Argumendi x väärtuste hulka, mille puhul saab määrata funktsiooni y väärtusi vastavalt eeskirjale f (x), nimetatakse funktsiooni määramispiirkonnaks. Määramispiirkonnale vastavat funktsiooni väärtuste hulka nim. funktsiooni muutumispiirkonnaks. 2 Funktsiooni esitusviise Funktsiooni esitus tabelina x x1 x2 ....... xn y y1 y2 ...... yn...
0 x x0 + 0 y Kaldasümptoot y = kx + b , kus k = lim ja b = xlim ± ( y kx) x ± x Vertikaalasümptoot asub selles punktis, kus esineb teist liiki katkevus. Võrrand x = a Kahe muutuja funktsiooni piirväärtus: on , kui lim lim f ( x, y ) = lim lim f ( x, y ) = lim f ( x, y ) x x0 y y 0 y y 0 x x0 x x0 : y y 0 puudub, kui lim lim f ( x, y ) lim lim f ( x, y ) x x0 y y 0 y y 0 x x0 võib olla ja võib ka mitte olla, kui lim lim f ( x, y ) = lim lim f ( x, y )...
) Siia võiks liigitada ka vanade arhiveeritud videosalvestiste läbivaatamised; - Küsitlused , mis jagunevad omakorda mitmeks alaliigiks : suuline küsitlus, iseregistreerumine ja korrespondentsvaatlus. EKSPERIMENT. Eksperiment on uurimismeetod, mille käigus kontrollitakse püstitatud hüpoteesi, luues ise vajalikud tingimused muude muutujate kontrolli all hoidmiseks. Eksperimendi käigus kontrollitakse, kuidas sõltuv muutuja muutub vastavalt sellele, kuidas manipuleeritakse sõltumatu muutujaga (näiteks herilaste toitumise sõltuv muutuja uurimiseks asetatakse tassile tilk suhkruvett sõltumatu muutuja . Kontrollimiseks kasutatakse samasuguseid tasse ilma suhkruta). Eksperiment ehk katse on selline uurimismeetod, mille puhul uurija ise sekkub nähtuse loomulikku olemusse, mõjutades seda uute, uurimise eesmärgile vastavate tingimuste loomise teel...
Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number 10. süsteemis: 121055 Matrikli number 16. Süsteemis: 8-kohaline arv: 2F572B3F 4-muutuja loogikafunktsiooni 1de piirkond: 2, 15, 5, 7, 11, 3 2F572B3F/11=2C8E46D Määramatuspiirkond: 12, 8, 14, 4, 6, 13 (x1...x4) = (2, 3, 5, 7, 11, 15)1 (4, 6, 8, 12, 13, 14)_ 2. Leida MDNK ja MKNK, mis sobiksid matriklinumbrist leitud osaliselt määratud 4- muutuja funktsiooni esitamiseks. X3,X4 00 01 11 10 X1,X2 00 0 0 1 1 01 - 1 1 - 11 - - 1 - 10 - 0 1 0 __ (X1,X2,X3,X4)=( X2 X3 X4 X1 X3) - MDNK Index Number Märge Index Nr.d Vahe M Index Nr.d Vah M...
Mitu artiklit tuli sealjuures kustutada analüüsist, kuna need ei vastanud kriteeriumitele. Uuringuid kodeeriti nelja võimaliku sõltuva hoiaku ja/ või käitumusliku kavatsuse järgi: a) suhtumine positsiooni, b) suhtumine edastatud informatsiooni sihtmärki, c) suhtumine valmisaktiivsusesse ja valimissoov ning d) suhtumine negatiivse info edastaja sponsorisse. Sealjuures sisaldas esimene muutuja nelja erinevat uuringut ja teine sõltuvate muutujatega klaster kirjeldas, kuidas poliitiline kandidaat oli positsioonist mõjutatud. Kolmas sõltub muutuja oli kombinatsioon sellest, kuidas positiivne ja negatiivne informatsioon mõjutavad valimistahet ning viimane arvestas seda, kuidas negatiivse reklaami kasutamine mõjutab sponsorit. Analüüsitehnika sisaldas kolme osa: a) tavalist statistilist mõõtesüsteemi, b) erinevate efektide keskmist ja c) ning originaalandmete muutlikkuse uurimist...
Igat süsteemi (x1,x2,...xm) nim m-mõõtmelise ruumi punktiks ja tähist. P=(x1,x2,...xm) või P(x1,x2,...xm). Arbe x1,x2,...xm nim. punkti P koordinaatideks. Def.2 Sellist m-mõõtmelist ruumi, kus on määratud iga kahe punkti d(A,B) seosega d(A,B)=( i=1m(ai-bi))1/2 nim m-mõõtmeliseks eukleidiliseks ruumiks ja tähist. Rm Def.3 Kui hulgs D igale punktile P=(x1,x2,...xm) on vastavusse seatud üks kindel reaalarv w, siis öeldakse, et hulgal D on määratud w- muutuja funktsioon w=f(x1,x2,...xm), hulka D nim funi w=f(x1,x2,...xm) määramispiirkonnaks, suurusi x1,x2,...xm nim funi argumentideks (funil on m argumenti) Def.4 Punkti ARm ümbruseks nim iga lahtist kera S(a,r) (erijuhud: m=2 A ümbruseks lahtine ring S(a,r), m=1 A ümbruseks sümmeetriline vahemik) Def.5 Öeldakse, et hulk D on lahtine ruumis Rm kui iga tema punkt on sisepunkt. Öeldakse, et hulk D on kinnine, kui ta sisaldab kõiki oma rajapunkte. Def...
Samasuunalised ja vastassuunalised vektorid. Vektorite skalaarkorrutis. Mitmemõõtmeline ruum kui eukleidiline ruum. Cauchy- Schwartzi võrratus. 3. Lahtised ja kinnised kerad. Punkti ümbrus. Sise- ja rajapunktid. Lahtised ja kinnised hulgad. Sidus hulk. Tõkestatud hulk. 4. Mitmemõõtmelise muutuva suuruse mõiste. Suuruse muutumispiirkond. Mitmemuutuja funktsiooni mõiste. Funktsiooni argument, sõltuv muutuja ja määramispiirkond. Mitmemuutuja funktsiooni graafik. Kahemuutuja funktsiooni graafiku geomeetriline sisu ja omadused. 5. Algebralised tehted mitmemuutuja funktsioonidega. Mitmemuutuja liitfunktsiooni mõiste. Parameetrilised pinnad. Parameetrilised kahemuutuja funktsioonid. Nivoopinnad ja nivoojooned. 6. Järjestatud mitmemõõtmelise muutuva suuruse mõiste. Mitmemõõtmelise muutuva suuruse piirväärtuse definitsioon. Piirprotsessi PA seos...
Tõkkestatud hulgad on näiteks: vahemik (a,b), lõik ,poollõik . 2. Jääv ja muutuv suurus. Muutuv suurus on suurus mis võib omandada erinevaid arvulisi väärtusi (aeg).Suuruse milline väärtus ei muutu nimetatakse jäävaks suuruseks (kiirus). Suuruse muutumispiirkond. Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon. Funktsiooni argument, sõltuv muutuja , määramispiirkond ja väärtuste hulk. Funktsiooni esitamine tabelina ja analüütiliselt. Funktsiooni graafiku mõiste. Graafiku omadused. 3. Paaris- ja paaritud funktsioonid. Funktsioon on paaris kui iga korral kehtib võrdsus kui aga korral kehtib võrdsus siis funktsioon nimetatkse paaritu. Perioodilised funktsioonid. Funktsiooni f nimetatakse perioodiliseks kui leidub konstant C>0...