Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ukraina abi Ukraina kaitse vajab abi. Tee annetus täna! Aita Ukrainat Sulge
Add link

"matemaatika" - 2936 õppematerjali

matemaatika – Jada piirväärtus Arvu A nimetatakse jada a n piirväärtuseks, kui iga positiivse arvu ε1 jaoks leidub jadas järjekorranumber m, millest alates jada järgnevad liikmed erinevad arvust A vähem kui ε võrra, st. |an – A| < ε, kui n ≥ m. Ringjoone pikkuseks nimetatakse korrapäraste hulknurkade ümbermõõtude jada piirväärtust hulknurga tippude arvu tõkestamatul kasvamisel.

Õppeained

Matemaatika -Gümnaasium
Matemaatika -Põhikool
Matemaatika ja statistika -Eesti Ettevõtluskõrgkool Mainor
Matemaatika -Kutsekool
Matemaatika -Tartu Ülikool
Matemaatikadidaktika -Tartu Ülikool
Matemaatika -Tallinna Tehnikaülikool
Matemaatika 7 klass -Põhikool
Matemaatika analüüs i -Tallinna Tehnikaülikool
Matemaatika ja loogika -Eesti Ettevõtluskõrgkool Mainor
Matemaatika -Eesti Ettevõtluskõrgkool Mainor
Matemaatika -Tallinna Ülikool
Matemaatika -Põhikool
Matemaatika -Eesti Infotehnoloogia Kolledzh
Matemaatika didaktika -Tallinna Pedagoogiline Seminar
Matemaatika 8.klass -Tallinna Pedagoogiline Seminar
Matemaatika 6. klass -Tallinna Pedagoogiline Seminar
Matemaatika 11.klassile -Tallinna Pedagoogiline Seminar
Matemaatika 10. klassile -Tallinna Pedagoogiline Seminar
Matemaatika

Kasutaja: Matemaatika

Faile: 0
5
doc

"Matemaatika" - Referaat

Toila Gümnaasium Matemaatika Koostas:Tanel Seli Toila 2009 Matemaatika Sõna matemaatika tuleb kreekakeelsest sõnast mathma seetähendab õpitu, teadus. Matemaatika on teadusharu, mis uurib mitmesuguseid hulki ­ arvuhulki, punktihulki ehk kujundeid, funktsioonihulki jms. Peatähelepanu ei osutata seejuures hulkade sisulisele tähendusele, vaid nende elementide seostele ja omadustele. Palju matemaatika mõisteid, näiteks arv, geomeetriline kujund ja funktsioon, on tekkinud tegelike hulkade, esemete või seoste kõrvutamisel ja võrdlemisel, kusjuures on jäetud kõrvale kõik need omadused, mis matemaatika seisukohast pole olulised. Matemaatika eripära teiste teadustega võrreldes on, et matemaatikas ei saa pidada ühtki väidet (peale aksioomide ja definitsioonide) tõeseks, kui seda pole loogiliselt järeldatud varem teada olnud väiteist. Loogiline järeldamine on uute matemaatiliste tõdede saamise vahend. Matem...

Matemaatika - Keskkool
77 allalaadimist
2
doc

Matemaatika 8 klassi reeglid & valemid

*Võrdsete alustega astme korrutamisel astendajad liidetakse. am x an = a m+n 2)Võrdsete alustega astme jagamine. *Võrdsete alustega astmete jagamisel astendajad lahutatakse. am : an = a m-n 3) Korrutise astendamine. *Korrutise astendamisel võib astendada iga tegur eraldi ja siis saadud tulemus korrutada. ( a x b )m am x bm 4) Jagatise astendamine. *Jagatise astendamisel võib astendada eraldi jagatava ja jagaja ja seejärel jagada üks tulemus teisega. ( a x b ) m am : bm 5) Astme astendamine, *Astme astendamisel astendajad korrutatakse. ( a m ) n = a mxn 6) Hulkliikme korrutamine üksliikmega. *Hulkliikme korrutamisel üksliikmega tuleb hulkliige iga liige läbi korrutada selle üksliikmega. ( a + b + c ) x d = ad + bd + cd 7) Hulkliikme jagamine üksliikmega. *Hulkliikme jagamisel üksliikmega tuleb hulkliikme iga liige läbi jagada selle üksliikmega. ( a + b + c ) : d = a+b+c = a:d + b:d + c:d...

Matemaatika - Põhikool
278 allalaadimist
5
pdf

Matemaatika riigieksam 2009

Sisaldab matemaatika riigieksami 2009, esimese variandi, teise poole lahendusi...

Matemaatika - Keskkool
658 allalaadimist
2
doc

Keskkooli matemaatika proovieksam

Matemaatika proovieksami ülesanded aastal 2008/2009 3. kursus Variant I 1. Lahendage juurvõrrand ja kontrollige saadud lahendeid: x + 2 = 4x -4 2. Lahendage eksponentvõrrand ja kontrollige saadud lahendeid: 2 -2 26x = 42x 3. Lahendage logaritmvõrrand ja kontrollige saadud lahendeid: ( log x ) 2 - 6 log x + 7 = 0 4. Leidke koonuse telglõike pindala, kui moodustaja on 15 cm ja kõrgus 12 cm. 5. On antud funktsioon y = 2x3 + x 2 · Leidke funktsiooni nullkohad X0 · Leidke funktsiooni positiivsus- ja negatiivsuspiirkond...

Matemaatika - Keskkool
228 allalaadimist
3
doc

Matemaatika reegleid

Reeglid seitsmendale klassile Koostanud : Crazychil Tehted ratsionaalarvudega Ratsionaalarvude hulka kuuluvad positiivsed ja negatiivsed täisarvud ja murdarvud Kahe negatiivse arvu liitmine Arvu absoluutväärtus näitab kui kaugel on deda arvu kujutav punkt arvteljel 0 punktist Kahe erimärgilise arvu liitmine Vastandarvude summa on alati 0 Erumärgiliste arvude summa saamiseks lahutame suuremast absoluutväärtusest võiksema ja märgi võtame samasuguse nagu on suurema absoluutväärtuse ees Ratsionaalarvude lahutamine Lahutamine on vastandarvu liitmine Ratsionaalarvude liitmine lahutamine on vastandarvude liitmine. Posiiivse arvu B vastandarv on -B Negatiivse arvu -B vastandarvuks on positiivne arv B Seega vastandarvu vastandarv on arv ise Negatiivse arvu lahutamise asemel liidame vastandarvu Kahepunkti vaheline kaugus arvteljel Vähendatava ja vähendaja järjestuse muutmisel mmuutub vahemärk vastupidiseks ,ei muutu absoluutväärtus Ratsionaalarvude korrutamine Sam...

Matemaatika - Põhikool
79 allalaadimist
2
odt

Matemaatika raudvara: Ruutjuur

Arvu 5 ruut on 25, sest 52 = 5 · 5 = 25. Ruutjuur Antud mittenegatiivse arvu a ruutjuureks nimetatakse sellist mitte- negatiivset arvu b, mille ruut võrdub arvuga a. a =b b2 = a ! Negatiivsest arvust ei saa ruutjuurt võtta. Juure korrutis ab= a b Mittenegatiivsete arvude korrutise ruutjuur võrdub tegurite aritmeetilise ruutjuure korrutisega Jagatise ruutjuur a a = b b Positiivsete arvude jagatiste aritmeetiline ruutjuur võrdub nende arvude aritmeetiliste ruutjuurte jagatisega. Ruut võrrand Võrrandit ax²+bx+c=0, milles a, b ja c on antud arvud (a0) ja x on tundmatu, nimetatakse ruutvõrrandiks. ax² + bx + c = 0 a ruutliikme kordaja ax² ruutliige b lineaarliikme kordaja bx lineaarliige c vabaliige Valem. Ruutvõrrandiks nimetatakse võrrandit, mida saab esitada kujul . Seejuures tähistavad a, b ja c reaalarvulisi...

Matemaatika - Põhikool
128 allalaadimist
3
pdf

Diskreetne matemaatika II - esimene kodutöö

Diskreetne matemaatika II Kodused ülesanded 1 Olga Dalton 104493 IAPB21 1. (a) Kuna A on positiivsete täisarvude hulk, mille viimane number on 3, siis sisaldab hulk A arve 1,2,3, nendest paarisarv on 2. Seega on hulkade A ja B ühisosa {2} VV { { (b) 5-ga jagub iga arv, mis lõpeb kas 5 või 0-ga. Nendest arvudest on 5-ga lõppevad paaritud ja 0-ga lõppevad paarisarvud. Seega kuuluvad hulkade A ja B ühisosasse 0-ga lõppevad ja 5-ga jaguvad täisarvud, st 10-ga jaguvad täisarvud(arvud, mis annavad 10-ga jagamisel jäägi 0): VV {YÉY X { 2. Kujutan Venni diagrammil C = A B Et A C = (AC) (CA), siis · (AC) kujutub järgmiselt: · (CA) j...

Diskreetne matemaatika - Tallinna Tehnikaülikool
227 allalaadimist
1
docx

Matemaatika valemid

Aritmeetiline jada: an = a1+(n-1)d d = an-an-1 Sn = Geomeetriline jada: an = a1qn-1 Sn = Hääbuv jada: S = Trigonomeetria: sin 2 2 2 = sin +cos = 1 1+tan = sin2 = 2cossin cos2 = 2cos2-1 tan2 = siinusteoreem: (ümberringjoone raadius) koosinusteoreem: a2=b2+c2-bccos erikülgne kolmnurk: S= n Põhivõrrandid: sinx= a x=(-1) +180n, n Z cox= a x=+360n, n Z tanx= a x= +180n, n Z Kaare pikkus: l= Sektori pindala: S= n Liitintress: c= a(1) a-algväärtus Vektorid: pikkus paralleelsus || ristseis X1X2+Y1Y2= 0 nurk vektorite vahel cos = Sirge võrrand: kahe punktiga tõusu ja algkoordinaadiga y= kx+b (lp y-teljega) tõusu ja punktiga y-y1=k(x-x1) Kahe sirge vastastikused asendid: paralleelsed A||...

Matemaatika - Keskkool
315 allalaadimist
5
doc

8.kl matemaatika ülesandeid koos lahendustega

Maalil ja Juulil on kokku 480 krooni. Kui Maali annaks Juulile 120 krooni, siis jääks talle niisama palju raha, kui oli enne Juulil. Kui palju oli raha Maalil ja Juulil? Lahendus: Olgu Maalil x krooni ja Juulil y krooni. Kokku on neil siis x + y = 480 krooni. Kui Maali annaks Juulile 120 krooni, siis jääb talle x - 120 krooni, mis on niisama suur summa, kui oli enne Juulil x ­ 120 = y. Saame võrrandisüsteemi: Kontroll: Maalil ja juulil on kokku 300 + 180 = 480 krooni. Kui Maali annaks Juulile 120 kooni, siis talle endale jääks 300 ­ 120 = 180 krooni, mis on samapalju kui Juulil esialgu. Vastus: Maalil oli 300 krooni ja Juulil 180 krooni. 2. Arvuta kujundi pindala, mida piiravad jooned x = 0; y = -2; y = 5; y = -2x + 10. Lahendus: Leiame joonte lõikepunktid. 1) Joonte x = 0; y = -2 lõikepunkt on A(0;-2). 2) Joonte y = 5 ja y = -2x + 10 lõikepunkt. Koostame võrrandisüsteemi: Joonte y = 5 ja y = -2x +...

Matemaatika - Põhikool
190 allalaadimist
1
docx

Matemaatika analüüs I - eksami küsimused ja vastused

Funktsiooni mõiste. Määramispiirkond ja muutumispiirkond. Kolme põhilise elementaarfunktsiooni graafikud. - y=f(x), on eeskiri, mis seab ühe muutuja (sõltumatu muutuja ehk argumendi) igale väärtusele vastavusse teise muutuja (sõltuva muutuja) kindla väärtuse. - Argumendi väärtuste hulk on funktsiooni määramispiirkond X ja funktsiooni väärtuste hulk on funktsiooni muutumispiirkond Y. 2. Funktsioonide liigitus paarisfunktsiooniks ja paarituksfunktsiooniks. Kaks tuntumat paarisfunktsiooni ja kaks tuntumat paaritutfunktsiooni. - Kui terves määramispiirkonnas kehtib funktsiooni f(x) jaoks võrdus f(-x)=f(x), siis on tegemist paarisfunktsiooniga. Paarisfunktsiooni graafik on sümmeetriline y-telje suhtes. f(x)=x2, sest (-x)2=x2 f(x)=cosx, sest cos(-x)=cos x - Kui terves määramispiirkonnas kehtib funktsiooni f(x) jaoks võrdus f(-x)=-f(x), siis on tegemist paaritu funktsio...

Matemaatika analüüs I - Tallinna Tehnikaülikool
408 allalaadimist
1
docx

Matemaatika analüüs I spikker

funk mõiste Y=f(x) on eeskiri,mis seab ühe muutuja igale väärtusele vastavusse teise muutuja kindla väärtuse. 2.funk liigitus kui terves määramispiirkonnas kehtib funk f(x) jaox võrdlus f(-x)=f(x), siis on tegemist paarisfunktsiooniga. süm y- telje suhtes. F(x)=x2 , x4 .3.funk piirväärtus-vaatleme funk f(x).kui argumendi x väärtuste jada xn lähenemisel arvule a üxkõik kummalt poolt kas paremalt või vasakult funk väärtuste jada f(xn) läheneb kindlale arvule A siis see arv A on funk f(x) piirväärtus argumendi x lähenemisel arvule a lim f(x)=A 4.funk tuletis-funk tuletis on funk muudu ja argu muudu suhte piirväärtus argu muudu lähenemisel nullile.y=f(x) tuletiste tähised y`,f`(x),dy/dx,df/dy,yx funk tuletis sümb.- y`=lim(x0) y/x=lim(x0) f(x+x)- f(x) / x ..funk tuletise väärtus mingis puntkis näitab selle funk muutumiskiirust antud punktis. 5.joone puutuja-joonele mingis punktis tõmmatud puutuja on seda punkti läbivate lõlikajate piirasend.putuja võrrand y-y0=f`(...

Matemaatika analüüs I - Tallinna Tehnikaülikool
209 allalaadimist
9
doc

4.klassi matemaatika II poolaasta töökava.

klassile II POOLAASTA Aine : Matemaatika Klass: 4 B Õpetaja : Kasutatav õppekirjandus: Matemaatika õpik 4. klassile II osa. K. Kaasik, Avita 2005 Matemaatika töövihik 4. klassile II osa. K. Kaasik, A. Kaasik, Avita 2005 Matemaatika kontrolltööd ja tunnikontrollid 4. klassile. A. Kaasik, Avita 2002 Matemaatika lisaülesanded 4. klassile. K. Laanmäe, Avita 2002 Nüüd on minu kord. E. Pehkonen, L. Pehkonen, Avita 1997 Matemaatikaviktoriinid 1.­4. klassile. E. Saidla, Avita 2003 Interaktiivsed töölehed Üldeesmärgid : Jätkuvalt pöörata tähelepanu õppeedukuse kvaliteedi parandamisele. Tõhustada oluliselt koostööd aineõpetajate vahel. Märgata õpilase individuaalsust ja leida õpilase arenguks sobivaim õpikeskkond (võimeterühm, individuaalne õppekava) Kujundada oma aine ja klassijuhataja töö kaudu posi...

Matemaatika - Põhikool
59 allalaadimist
1
docx

9.klassi matemaatika eksami vastused

Ülesannete vastused. 1. ülesanne Vastus(ed) : 1: (a-b); 1:5 2. ülesanne Vastus(ed) : 1. 288 2.196 3.Ei 3. ülesanne Vastus(ed) : 1.y = 4:x 3. A(­4; ­1); B(2; 2) 4. x1 = ­4; x2 = 2 4. ülesanne Vastus(ed) : 1. Kolm 2.Saaremaa 3.Tartumaa 5. ülesanne Vastus(ed) : 2. 25 cm; S = 600 cm2 3. OK = 12 cm 6. ülesanne Vastus(ed) : Plaatide hind 0.3 ja pakis on plaate 25 tükki 7.ülesanne Vastus(ed) : 75% või 0,75 või 3:4 ...

Matemaatika - Põhikool
159 allalaadimist
3
rtf

Matemaatika lühitutvustus

Matemaatika Matemaatika (kreekakeelsest sõnast mathma 'õpitu, teadus') on teadus, mis uurib mitmesuguseid hulki ­ arvuhulki, punktihulki ehk kujundeid, funktsioonihulki jms. Peatähelepanu ei osutata seejuures hulkade sisulisele tähendusele, vaid nende elementide seostele ja omadustele. Palju matemaatika mõisteid, näiteks arv, geomeetriline kujund ja funktsioon, on tekkinud tegelike hulkade, esemete või seoste kõrvutamisel ja võrdlemisel, kusjuures on jäetud kõrvale kõik need omadused, mis matemaatika seisukohast pole olulised. Näiteks arv 5 pole seoses ühegi tegeliku hulgaga, kuid teda saab seada vastavusse ühe käe sõrmedega, 5 õunaga jne. Kõigil sellistel hulkadel on elementide sisulisest tähendusest olenemata üks ühine omadus - nende elemente saab seada üksühesesse vastavusse. Matemaatika eripära teiste teadustega võrreldes on, et matemaatikas ei saa pidada ühtki väidet (peale aksioomide ja definitsioonide) tõeseks, kui seda po...

Matemaatika - Põhikool
8 allalaadimist
6
docx

Matemaatika riigieksamiks kordamine

FUNKTSIOONID Paarisfunktsioon: Paaritu funktsioon: Funktsioonide üldkujud: y = ax 1) X= Y= 2) X = Y = 1) 0 < a < 1 2) a > 1 y = logax 1) X= Y= 2) X = Y = 1) 0 < a < 1 2) a > 1 y = xa 1) X= Y= 2) X = Y = 1) a on paarisarv 2) a on paaritu arv y = 1 / xa 1) X= Y= 2) X = Y = 1) a on paarisarv 2) a on paaritu arv y = sin x y = cos x y = tan x Perioodide pikkused: y = sin x periood: y = cos x periood: y = tan x periood: TRIGONOMEETRIA 1 + tan2 = 1 + cot2 = sin (+) = sin (-) = cos (+) = cos(-) = tan (+) = tan (-) = sin 2 = cos 2 = tan 2 = sin /2 = cos /2 = tan /2 = Võrrandid: sin x = m x= cos x = m x= tan x = m x= Eukleidese teoreem: Teoreem kõrgusest: Siinusteoreem: 2R = Koosinusteoreem: NB! p ­ pool ümbermõõtu, r ­ siseringjoon...

Matemaatika - Keskkool
155 allalaadimist
2
docx

Põhikooli matemaatika proovieksami ülesanded 2013

PÕHIKOOLI MATEMAATIKA PROOVIEKSAMI ÜLESANDED 2013 Pane tähele! Ülesanded 1, 2, 3, 4 ja 5 on kohustuslikud ja valikülesannete (6, 7) hulgast lahenda omal valikul veel üks ülesanne. Maksimaalselt on võimalik kuue ülesande lahendamise eest saada 50 punkti. Ülesannete lahendamiseks on aega 180 minutit. Sul on lubatud kasutada taskuarvutit ja joonestusvahendeid. Jooniseid täienda vastavalt vajadusele ülesannete lehel, s.t. neid pole vaja lahenduste lehele uuesti joonestada. Hindamine: 45-50 punkti ­ hinne ,,5"; 35-40 punkti ­ hinne ,,4"; 23 ­ 34 punkti ­ hinne ,,3"; 10-22 punkti ­ hinne ,,2"; 0-9 punkti ­ hinne ,,1". Ülesanne 1. (8 punkti) a3 - ab2 a 2 + b2 1 : + 2b a= 27 2 Lihtsusta avaldis a - ab a...

Matemaatika - Põhikool
83 allalaadimist
5
doc

X klassi matemaatika lühikonspekt

X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b  N korral a  b  b  a . Liitmis kommutatiivsus. 2. Iga a, b  N korral a  b  b  a . Korrutamise kommutatiivsus. 3. Iga a, b, c  N korral a   b  c    a  b   c . Liitmise assotsiatiivsus. 4. Iga a, b, c  N korral a   b  c    a  b   c . Korrutamise assotsiatiivsus. 5. Iga a, b, c  N korral a   b  c   a  b  a  c ....

Matemaatika - Kutsekool
88 allalaadimist
16
docx

Kitsa matemaatika eksami ülesanded

LIHTSUSTAMINE TÕENÄOSUSE ÜLESANDED: TÕENÄOSU FUNKTSIOON FUNKTSIOON FUNKTSIOON VÕRRANDID Geomeetria PROTSENT VEKTOR, VÕRRANDITE KOOSTAMINE Integraal, pindala arvutamine JADA ...

Matemaatika - Keskkool
155 allalaadimist
2
doc

Matemaatika 9. klassi kordamine alustamiseks

Lihtsusta 5a a 2  ab  b 2 a 3  b3 1)  : -1 1  5a 25a 2  10a  1 5a 2  a  5ab  b  5 2 2a  9  8 2a  3 2)    2  : 2  2a  3 3  2a 4a  9  4a  12a  9 2  1 1 1  3a  2  6a 1 3)   : 2     2  6a 27a  1 1  3a  9a  3 a a 2. Turist kavatses matkata 252 km. Kuna ta läbis iga päev 3 km rohkem kui kavatsetud,...

Matemaatika - Keskkool
42 allalaadimist
2
doc

Matemaatika funktsioonid

1. Leia määramispiirkond. a. y  4 x 3  3 x  1 X=R 3x  6 b. y   x  1 x 2  4   X=R{-2, 1, 2} c. y x 2  6x  8 X    ;2   4;  x3 d. y  X    4;0   4;  x 3  16 x 2. Leia nullkohad, pos., neg. piirkonnad. a. y  x 3  6 x 2  9 x  54 X     3;3   6;  ; X ...

Matemaatika - Keskkool
38 allalaadimist


Registreeri ja saadame uutele kasutajatele
faili e-mailile TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun