Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Lineaaralgebra täielik konspekt (24)

5 VÄGA HEA
Punktid
Vasakule Paremale
Lineaaralgebra täielik konspekt #1 Lineaaralgebra täielik konspekt #2 Lineaaralgebra täielik konspekt #3 Lineaaralgebra täielik konspekt #4 Lineaaralgebra täielik konspekt #5 Lineaaralgebra täielik konspekt #6 Lineaaralgebra täielik konspekt #7 Lineaaralgebra täielik konspekt #8 Lineaaralgebra täielik konspekt #9 Lineaaralgebra täielik konspekt #10 Lineaaralgebra täielik konspekt #11 Lineaaralgebra täielik konspekt #12 Lineaaralgebra täielik konspekt #13 Lineaaralgebra täielik konspekt #14 Lineaaralgebra täielik konspekt #15 Lineaaralgebra täielik konspekt #16 Lineaaralgebra täielik konspekt #17 Lineaaralgebra täielik konspekt #18 Lineaaralgebra täielik konspekt #19 Lineaaralgebra täielik konspekt #20 Lineaaralgebra täielik konspekt #21 Lineaaralgebra täielik konspekt #22 Lineaaralgebra täielik konspekt #23 Lineaaralgebra täielik konspekt #24 Lineaaralgebra täielik konspekt #25 Lineaaralgebra täielik konspekt #26 Lineaaralgebra täielik konspekt #27 Lineaaralgebra täielik konspekt #28 Lineaaralgebra täielik konspekt #29 Lineaaralgebra täielik konspekt #30 Lineaaralgebra täielik konspekt #31 Lineaaralgebra täielik konspekt #32 Lineaaralgebra täielik konspekt #33 Lineaaralgebra täielik konspekt #34 Lineaaralgebra täielik konspekt #35 Lineaaralgebra täielik konspekt #36 Lineaaralgebra täielik konspekt #37 Lineaaralgebra täielik konspekt #38 Lineaaralgebra täielik konspekt #39 Lineaaralgebra täielik konspekt #40 Lineaaralgebra täielik konspekt #41 Lineaaralgebra täielik konspekt #42 Lineaaralgebra täielik konspekt #43 Lineaaralgebra täielik konspekt #44 Lineaaralgebra täielik konspekt #45 Lineaaralgebra täielik konspekt #46 Lineaaralgebra täielik konspekt #47 Lineaaralgebra täielik konspekt #48
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 48 lehte Lehekülgede arv dokumendis
Aeg2008-11-18 Kuupäev, millal dokument üles laeti
Allalaadimisi 852 laadimist Kokku alla laetud
Kommentaarid 24 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor climbatize Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
3
docx

Lineaalalgebra Esimese KT konspekt

Maatriks arvutus Def 1 : (mxn) m korda n järku arv maatriks A nim mn arvust moodustatud tabelit, milles on m rida ja n veergu. NT filmilint, male- ja kaberuudud. Maatrikselemendid on elemendid, millest maatriks koosneb. Ai-reaindeksj- veeruindeks I= 1, 2, .....m j= 1, 2, ......n A=( a11 a12 a13 ....a1n) ( a21 a22 a23....a2n) ( a31 a32 a33 ....a3n) m=n (ruutmaatriks) nxn n2- maatriks mn (ristkülikmaatriks) Maatriksi seda osa, kus paiknevad elemendid a11 ; a22 ; a33 ..... akk nimetatakse maatriksi peadiagonaaliks. Maatriksi seda osa, kus paiknevad elemendid a1n ; a2n-1 ; a3n-2 .... akn(k-1) nimetatakse maatriksi kõrvaldiagonaaliks. a11 priviligeeritud element. Tehted maatriksiga Def 2 : maatriksid A ja B loetakse võrdseks, kui nad on sama järku ( ühepalju ridu ja veerge) ja nende kõik vastavad elemendid on võrdsed . A: (pxq) B: (rxs) p=r q=s Def 3 : (mxn) järku maatriksite A ja B summaks nimetatakse sama järku numbrite A + B, mille elemendiks on lähte maatriksite kõi

Matemaatika
thumbnail
2
docx

Lineaaralgebra - Maatriksid, 1. KT

Maatriksarvutus: Def. 1 (m x n) järku maatriksit A nimetatakse m · n elemendist moodustatud tabelit, milles on m-rida ja n-veergu Def. 2 Maatriksid A ja B loetakse võrdseks, kui nad mõlemad on sama järku ja nende maatriksite kõik vastavad elemendid on võrdsed Def. 3 (m x n) järku A ja B järku maatriksite A ja B summaks nimetatakse sama järku maatriksit -> A+B, mille elementideks on lähtemaatriksite A ja B kõigi vastavate elementide summa. Def. 4 (m x n) järku Maatriksi korrutiseks arvuga lambda nimetame maatriksit, mille elementideks on maatriksi kõigi elementide korrutised arvuga lambda. Def. 5 (m x n) järku A vastandmaatiksiks (-A) nimetatakse sama järku maatriksit, mille elementideks on lähtemaatriksi A kõigi elementide vastandväärtused Def. 6 (m x n) järku maatrikiste A ja B vaheks nimetatame sama järku maatriksi (A-B), mis loetakse võrseks maatriksi A ja maatriksi (-1)*B summa Def. 7 (m x k) järku maatriksi A ja (k x n) järku maatriksi B korrutiseks

Lineaaralgebra
thumbnail
24
rtf

Lineaaralgebra eksam

1. Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3. liitmise suhtes leidub nullelement (reaalarv 0, 0 + z = z + 0 = z z C korral), st leidub C, nii et z + = + z = z z korral; = (0; 0) = 0 4. igal kompleksarvul z = (x; y) = x + yi leidub (liitmise suhtes) vastandarv, st selline arv w C, et z + w = w + z = 0; w = -z 5. korrutamine on kommutatiivne, st z1z2 = z2z1 z1, z2 C korral 6. korrutamine on assotsiatiivne, st (z1z2)z3 = z1(z2z3) z1, z2, z3 C korral

Lineaaralgebra
thumbnail
28
pdf

Lineaaralgebra ja analüütiline geomeetria konspekt

Eksami kordamisküsimused Lineaaralgebra ja analüütiline geomeetria (2015- 2016 aasta sügis) Ristkoordinaadid. Kui ruumis on antud ristkoordinaadisüsteem, siis ruumi iga punkt P on üheselt määrastud ristkoordinaatidega x, y, z, kus x on punkti P ristprojektsioon abstsissteljele, y on punkti P ristprojektsioon ordinaatteljele ja z on punkti P ristprojektsioon aplikaateljele. Kirjutame P(x, y, z). Kahe punkti vaheline kaugus. Kui P1(x1, y1, z1), P2(x2, y2, z2) on ruumi punktid, siis kaugus d punktide P1 ja P2 vahel on määratud valemiga Vektori mõiste Vektor on suunatud lõik alguspunktiga punktis A ja lõpp-punktiga punktis B. Nullvektor Eukleidilises ruumis (näiteks tasandil) on nullvektoriks määramata suunaga vektor, mille pikkus on null. Ühikvektor Kui vektori pikkus on 1, siis teda nimetatakse ühikvektoriks. Vektorite liitmine ja lahutamine Lahutamine toimub sama põhimõtte järgi. Reaalarvu ja vektori korrutis. Vektori pikkus Vektori pikkuseks lo

Algebra ja analüütiline...
thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

Lineaarvõrrandsüsteem-nim. Võrrandisüsteemi kujul {a11x1+..+a1nxn=b1 ; am1x1+.. +amnxn=bm. Arve aij nim lvs kordajateks, arvud b1..bm on vabaliikmed ja x1..xn on tundmatud. Süsteemi võrrandite arv m ja tundmatute arv n on sõltumatud. Sellist võrrandisüsteemi nimetatakse lineaarseks võrrandisüsteemiks, sest otsitavad suurused x1.. xn esinevad ainult lineaarsetes tehetes, st neid on vaid liidetud ja skalaariga korrutatud. Def. Arvude järjendit c1.. cn nim lvs lahendiks, kui tundmatute asendamisel nende arvudega (loomulikus järjekorras, st x1 = c1.. xn = cn) on süsteemi kõik võrrandid rahuldatud. Võrrsüsteemi nim kooskõlaliseks, kui tal leidub vähemalt 1 lahend. Kui lahendid puuduvad, nim sõsteemi vasturääkivaks. Võrrsüs kõigi lahendite hulka nim võrrsüs lahendihulgaks e üldlahendiks. Igal lvs-l kas lahend puudub, on ühene lahend või on lõpmata palju lahendeid. Cramer. Def. Öeldakse, et lvs-i korral on tegemist Crameri peajuhuga, kui 1)tundmatute arv võrd

Lineaaralgebra
thumbnail
4
pdf

Lineaaralgebra I osaeksam 2013

1. Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi, (1) kus a ja b on reaalarvud ja i on nn. imaginaarühik, mis on määratud võrdustega i = - 1 või i 2 = -1 . Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z 2 = a 2 + b2 i loetakse võrdseteks ( z1 = z 2 ) , kui a1 = a 2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o. z = a + bi = 0 siis ja ainult siis, kui a = 0 ja b = 0. z = a + bi = r cos + i sin ehk z = r (cos + i sin ) Avaldist võrduse paremal poolel nimetatakse kompleksarvu z = a + bi trigonomeetriliseks kujuks; suurust r nimetatakse kompleksarvu z mooduliks ja suurust selle kompleksarvu argumendik

Lineaaralgebra
thumbnail
9
doc

Lineaaralgebra

Lineaaralgebra I kontrolltöö teooriaküsimused 1. Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi , (1) kus a ja b on reaalarvud ja i on niinimetatud imaginaarühik, mis on määratud võrdustega i = -1 või i 2 = -1 ; Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z2 = a2 + b2i loetakse võrdseteks ( z1 = z2 ) , kui a1 = a2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o.

Lineaaralgebra
thumbnail
5
doc

algebra konspekt

Sirged ja tasandid Joonte ja pindade võrrandite mõiste Võrdust F(x,y,z)=0 nim pinna S võrrandiks antud koordinaatide süsteemis, kui selle pinna kõikide punktide koordinadid rahuldavad seda võrdust ja nende punktide koordinadid, mis ei asu sellel pinnal, ei rahulda seda võrdust. Sfäär on niisuguste punktide hulk, milliste kaugus keskpunktist on võrdne raadiusega r. Tähistades sfääri meelevaldse punkti M koordinadid (x,y,z) ning avaldades võrduse |OM| =r koordinatide kaudu. Võrdust (x-a)² + (y-b) ² + (z-c)² = r² nim sfääri võrrandiks vaadeldavas koordinaatide süsteemis. Kui pinna võrrand on esitatav kujul F(x,y,z)=0, kus F(x,y,z) on n-astme polünoom, siis nim pinda n-järku algebraliseks pinnaks. Algebralistest pindadest lihtsaim on esimest järku pind ehk tasand. Sfäär on teist järku pind, sest selle võrrandis esinevad tundmatud on teisel astmel.Võrdust F(x,y)=0 nim joone L võrrandiks antud koordinaatide süsteemis tasandil, kui teda rahuldavad joone L k

Algebra ja Analüütiline...



Lisainfo

maatriksid jne

Meedia

Kommentaarid (24)

Martiinan profiilipilt
Martiinan: Väga hea, kahe nädala pärast tuleb eksam ja see materjal on abiks. Aitäh. :)
15:37 27-12-2008
producent profiilipilt
Sven Allik: põhjalik muidu, aga harjutusi ül võib ka õpikust teha neid on liiga palju
21:49 06-01-2010
Sten443 profiilipilt
Sten443: Nelja päeva pärast eksam, aitas palju, suured tänud!
00:17 26-10-2010





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun