1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): [ ] a = aij A = (aij ) = ij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon suurus). 3 -
MAATRIKSALGEBRA 1. Maatriksi mõiste ja liigitus Maatriksiks nimetatakse ristkülikukujulist elementide tabelit, mis koosneb m reast ja n veerust. Maatriksi elemente tähistatakse a ik, kus i näitab, millises reas ja k, millises veerus element asub. Maatrikseid tähistatakse suurte tähtedega A, B, C, . . . Maatriksi üldkuju on: a11 a12 ... a1n a 21 a 22 ... a 2 n . . . . a am2 ... a mn A= m1 . Lühemalt on võimalik maatriksit esitada kujul: A = ( aik ) mn. Maatriksi erikujud: 1. Kui m = n, siis nimetatakse maatriksit ruutmaatriksiks. Ruutmaatriksi võrdsete indeksitega elemendid aii moodustavad peadiagonaali
sid. Siis (A + B)(A - B) = A2 - B 2 - [A, B] T~ oestus. T~oepoolest (A + B)(A - B) = A(A - B) + B(A - B) = AA - AB + BA - BB = A2 - B 2 - [A, B] Seega (A + B)(A - B) = A2 - B 2 [A, B] = 0 mis u ¨tleb, et ruutude vahe valemit v~oib kasutada siis ja ainult siis, kui maatriksid A ja B kommuteeruvad. 3.7 Maatrikskorrutise omadusi: Poissoni-Lie algebra Teoreem 9. Maatriksid A, B, C olgu u ¨hesuguse j¨ arguga ruutmaat- riksid ning R. Siis 1) [A, B] = -[B, A] (antis¨ ummeetria) II. Maatriksarvutus 11 2) [A ± B, C] = [A, C] ± [B, C] (aditiivsus) 3) [A, B] = [A, B] = [A, B] (homogeensus)
MAATRIKSALGEBRA 1. Maatriksi mõiste ja liigitus Maatriksiks nimetatakse ristkülikukujulist elementide tabelit, mis koosneb m reast ja n veerust. Maatriksi elemente tähistatakse a ik, kus i näitab, millises reas ja k, millises veerus element asub. Maatrikseid tähistatakse suurte tähtedega A, B, C, . . . Maatriksi üldkuju on: a11 a12 ... a1n a 21 a 22 ... a 2 n A= . . . . . a am2 ... a mn m1 Lühemalt on võimalik maatriksit esitada kujul: A = ( aik ) mn. Maatriksi erikujud: 1. Kui m = n, siis nimetatakse maatriksit ruutmaatriksiks. Ruutmaatriksi võrdsete indeksitega elem
Lineaarsed võrrandisüsteemid Lineaarne võrrand Definitsioon Lineaarse võrrandi all mõistetakse võrrandit kujul a1 x1 + a2 x2 + ... + an xn = b, (1) kus a1 , ... , an ja b on fikseeritud (antud) arvud ning x1 , ... , xn on tundmatud. http://www.hot.ee/habib/MindReader.htm Arvu b nimetatakse vaadeldava võrrandi vabaliikmeks, arve a1 , ... , an aga tema kordajateks. Näide Võrrandis 5 x + 3 y - 2 z = -4 on vabaliikmeks arv 4, kordajateks arvud 5, 3 ja 2 ning tundmatud on tähistatud tähtedega x, y ja z. Lineaarse võrrandi lahend Definitsioon Lineaarse võrrandi (1) lahendiks nimetatakse sellist tundmatute x1 , ... , xn väärtuste komplekti c1 , ... , cn , R, mis asendamisel võrrandi (1) vasakusse poolde muudavad selle samasuseks: a1 c1 + a2 c2 + ... + an cn b. Näide Võrrandi 5 x + 3 y - 2 z = -4 üheks lahendiks on x = 1, y = -1 ja z = 3, kuna antud tun
Kõrgema matemaatika kordamisküsimused 1. Maatriksi definitsioon. Maatriksi elemendid. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Transponeeritud maatriks 2. Maatriksite korrutise definitsioon. Korrutamise omadused ja seosed lineaarsete tehete ning korrutamise vahel. Ühikmaatriks. 3. Teist ja kolmandat järku determinandid. 4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste. Pöördmaatriksi definitsioon ja elementide leidmise eeskiri. Pöördmaatriksi omadused. 7. Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Vasturääkiv, kooskõlaline, määratu süsteem. Süsteemi maatriks ja laiendatud maatriks. 8. Süsteemi lahen
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Mudeli mõiste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Matemaatiliste mudelite liigitus ja elemendid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Matemaatilise mudeli struktuur ja sisu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. FUNKTSIOONID JA NENDE ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Arvud ja nende hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Funktsionaalne sõltuvus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Astendamine. Polünoomid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TE.0568 Kõrgema matemaatika põhikursus (4 EAP) 2011/2012 sügis 1. Determinandid: omadused, miinorid, alamdeterminandid. Crameri meetod lineaarvõrrandisüsteemi lahendamiseks. Determinant on lineaaralgebras funktsioon, mis seab igale ruutmaatriksile vastavusse skalaari, ning on üks olulisemaid matemaatilisi konstruktsioone lineaarvõrrandsüsteemi uurimisel. Determinandiks nimetatakse ruutmaatriksiga seotud arvu, mis on arvutatud teatud eeskirja kohaselt. Determinante tähistatakse DA Maatriksi A determinanti tähistatakse tavaliselt , või . Determinant on defineeritud vaid ruutmaatriksile. Determinandi põhiomadused 1. Maatriksi determinandi väärtus ei muutu maatriksi transponeerimisel: det(A) = det(AT). 2. Determinant on null, kui determinandi 1 rida või veerg : 1. koosneb nullidest 2. on võrdne mõne teise vastava rea või veeruga
Kõik kommentaarid