Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

"tuletis" - 521 õppematerjali

tuletis on ju funktsiooni muudu ja argumendi muudu suhte piirväärtus argumendi muudu lähenemisel nullile… Funktsiooni tuletis on kindel arv, see on funktsiooni väärtus, millele ta läheneb pidevalt, ent millega ta iialgi reaalselt võrduda ei saa.
thumbnail
2
docx

Tuletis

c'=0 x'=1 (c × x)'=c (1/x)'=-1/x2 (√x)'=1/2√x (xn)'=n × xn-1 (ax)'=axIn a (ex)'=ex (In x)'=1/x (logax)'=1/x In (sin x)'=cos x (cos x)'=-sin x a (tan (cot x)'=- (arcsin x)'=1/cos2x 1/sin2x x)'=1/√1-x2 (arccos x)'=- (arctan (arccot x)'=- 1/√1-x2 x)'=1/1+x2 1/1+x2

Matemaatika → Matemaatika
12 allalaadimist
thumbnail
2
doc

Tuletis

Tuletis. Rakendused Puutuja tõus Funktsiooni uurimisel Funktsiooni uurimisel Funktsooni F'(x)=k ekstreeemumkohad kasvam ja kahanemine liikumise ' Puutuja võrrand F (x)=0 X F'(x)>0 ; XF'(x)<0 kiirus y-y0=k(x-x0) Min koht Max koht Kumerus Nõgusus F''(x)>0 F''(x)<0 F''(x)<0 F''(x)>0 Käänukoht F''(x)=0 1. Leia funktsioonide tuletised 2 - 3x 1) y=2x5-3,8x4+x2-2 2) y = x -1 3)y=(x+1)sinx-x cos x 4)y=2tanx lnx 5)y=xsinx ...

Matemaatika → Algebra ja analüütiline...
83 allalaadimist
thumbnail
2
doc

Funktsiooni tuletis

Funktsiooni tuletis Paljude matemaatiliste probleemide lahendamine viib tulemusele, et tuleb võtta funktsiooni muudu ja argumendi muudu suhte piirväärtus argumendi muudu lähenemisel 0 st y lim x x 0 Seetõttu on antud sellele piirväärtusele erinimetus ja sümbol. Funktsiooni f(x) muutumise kiirust kohal x0 nimetatakse funktsiooni tuletiseks kohal x0 ja tähistatakse f´`(X) y f ( x 0  x )  f ( x 0 )

Matemaatika → Matemaatika
39 allalaadimist
thumbnail
1
odt

Tuletise valemid

C '= 0 y= a x n y ' = a * n * x n-1 [ f ( x ) ± g ( x )]' = f '( x ) ± g ' (x ) [ f ( x ) * g( x ) ]' = f '( x ) * g( x ) + f ( x ) * g '( x ) ' ' ( gf (( xx )) ) = f ( x ) * g ( x[ g)-f( x ) (]x ) * g ' ( x ) 2 y= f [ u( x )] y '= f ' (u ) * u ' ( x ) (s i n x )' = c o s x (c o s x )' = -s i n x 1 (t a n x )' = 2 c os x 1 (ln x)' = x (ex)'=ex 1 (logax)'= x ln a (ax)'= axln a

Matemaatika → Matemaatika
19 allalaadimist
thumbnail
2
docx

Matemaatilise analüüsi teoreeme ja definitsioone

Def1. Piirväärtust limx 0y/x nimetatakse funktsiooni tuletiseks kohal x. T1. Kui funktsioonil on olemas tuletis kohal x, siis on funktsioon pidev sellel kohal. T2. Kui on olemas tuletised f' (x ) ja g' (x ), siis on olemas ka tuletised: a) [f(x)+g(x)]', b) [f(x)-g(x)]', c) [f(x)g(x)]', d) [f(x)/g(x)]',(kui g(x)0), kusjuures kehtivad järgmised seosed: a) [f(x)+ g(x)]' =f'(x)+g'(x), b) [f(x)-g(x)]' =f' (x)-g' (x), c) [f(x)g (x)]' = f'(x)g (x)+f(x)g '(x), d) [f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/g2(x) , (kui g(x) 0). T3. Kui funktsioonil on olemas tuletis kohal x ja funktsioonil f on olemas tuletis vastaval

Matemaatika → Matemaatika
32 allalaadimist
thumbnail
1
docx

TULETISED

TULETISED Astmeline:=n* nt. =5* Trigonomeetrilised: (=cosx = - sinx = Logaritmfunk. tuletised: (; ' Eksponentfunk tuletised: ' = *1 (e lne=1)= Tuletised : ' = ' (x)' = 1 (c)'=0 (-x)' = -1 Funktsioonide summa, vahe, korrutise ja jagatise tuletis 1.Summa tuletis (u+v)' = u' + v' Nt. + (= + 2. Vahe tuletis (u-v)' = u'-v' 3. Korrutise tuletis (u*v)' = u'*v + u*v' 4. Jagatise tuletis (

Matemaatika → Algebra ja analüütiline...
19 allalaadimist
thumbnail
12
pdf

Funktsiooni tuletis - loeng 5

Tuletise leidmise skeem Vastavalt tuletise definitsioonile, koosneb funktsiooni tuletise leidmine järgmistest etappidest: 1. funktsiooni f (x) muudu y arvutamine vastavalt valemile y = f (x + x) - f (x) y 2. jagatise x moodustamine y 3. piirväärtuse lim leidmine x 0 x 6 Näide On antud funktsioon f (x) = x2. Leida definitsiooni järgi tuletis: a) suvalises punktis x; b) punktis x = 3. 1. Funktsiooni muut: y = f (x+ x) ­ f (x) =(x + x)2 - x2 = 2x x + (x)2 2. Jagatis: y 2 xx + (x) 2 = = 2 x + x x x 3. Piirväärtus: y f ' ( x) = lim = lim (2 x + x) = 2 x x 0 x x 0 4. Kui x = 3, siis saame f ' (3) = 2 3 = 6 7 Rühmatöö

Matemaatika → Algebra I
52 allalaadimist
thumbnail
8
doc

Funktsioonid I Funktsiooni tuletis

Funktsioonid I Funktsiooni tuletis Tuletiste tabel:   1 1 c  0 x  1     x x2

Matemaatika → Matemaatika
85 allalaadimist
thumbnail
3
odt

Tuletis, kokku- ja lahkukirjutamine

EESTI KEELE KT TULETISED: *nimisõnaliited: · väljendavad tegevust: väljendavad isikut või asja: -mine, lugemine -ja, lugeja -nu, eksinu -us, võistlus -lane, eestlane -tu, kirjutatu -u, arutelu -nna, tallinlanna -r, lendur -e, huige -tar, poolatar -ik, häälik -ng, lööming -rd, käpard -ts, jalats -k, minek -sk, volask -kas, purjekas -ndus, kokandus -nd, kirjand -nik, politseinik -el, pardel -is, kirjutis -i, arvuti · väljendavad kogu või ala: -kond, kogukond -stik, sõnastik -stu, rõivistu -la, võimla -mu, elamu -mik, lugemik -ndik, lagendik *omadussõnaliited: -line, jooneline -ne...

Eesti keel → Eesti keel
11 allalaadimist
thumbnail
2
odt

Funtsioonide tuletiste valemid

FUNKTSIOONIDE TULETISED Funktsiooni y=f(x)tuletiseks kohal x nimetatakse funktsiooni muudu ja argumendi muudu suhte piirväärtust, kui argumendi muut läheneb nullile. f ( x + x)- f ( x) f ' ( x)= lim ¿ x 0 x Funktsiooni summa ja vahe tuletis [f (x) + g (x) ]' = f ' (x) + g ' (x) [f (x) - g (x) ]' = f ' (x) - g ' (x) Funktsiooni korrutise tuletis [f (x) * g (x) ]'= f ' (x) *g (x) + f (x) * g ' (x) Funktsiooni jagatise tuletis [ ] f (x) g(x) '= f ' ( x)g (x )- f ( x )g ' ( x) [ g ( x) ] 2 TULETISTE VÄÄRTUSED: (x a )' = a * x a-1 ( a x )' = a x * ln a (e x )' = e x 1 -1 ( )' = 2 x x 1 (log a x)' = xln a 1 (ln x )' = x (sin x)' = cos x (cos x)' = - sind x

Matemaatika → Matemaatika
45 allalaadimist
thumbnail
21
pdf

Funktsiooni tuletis (jätk) loeng 6

Funktsiooni tuletis (jätk) - + sin - sin = 2 sin cos 2 2 Funktsiooni y = sin x tuletis Teoreem: Funktsiooni y = sin x tuletis on cos x. x + x - x x + x + x Tõestus: y = sin( x + x) - sin x = 2 sin cos 2 2 x x = 2 sin cos x + 2 2 x x x 2 sin cos x + sin y 2 2 2 cos x + x

Matemaatika → Matemaatika
71 allalaadimist
thumbnail
0
jpg

Funktsiooni tuletis ja algebraliste funktsioonide diferentseerim

docstxt/1364641070471.txt

Matemaatika → Algebra ja analüütiline...
21 allalaadimist
thumbnail
4
docx

KANGASTE SIDUSED

KANGASTE SIDUSED Töö võiks olla vormistatud analoogselt lõngade- niitide tööga. Tehtav töö peaks olema vormistatud korrektselt ja ülevaatlikult. Tabelis on ära toodud osad, mida töö peab sisaldama. Nimetus1 Näidis2 Pilt3 Skeem4 Kirjeldus5 PÕHISIDUSED:  Labane Riide mõlemal poolel on ühesugune arv lõim- ja kudekatteid, mis asetsevad maleruutude taoliselt. Erineva paksusega lõime- ja koelõngade kasutamisel tekivad riide pinnale nn ripsijooned. (tasakaalustamata labane)  Toimne on iseloomulikud diagonaalsed jooned (toimejooned), See riide pool, kus toimejooned on paremini nähtavad, on parem pool. Tavaliselt diagonaal 45kraadise nurga all. 1. Lõimepindne Kanga paremal poolel on ülekaalus lõimelõngad. Kanga pahemal poolel ei ole toimejooni näha. 2. Koepindne Kanga paremal poolel on ülekaalus koelõngad 3. Tasapindne Lõime- ja koekatteid on kanga paremal p...

Materjaliteadus → Materjaliõpetus
86 allalaadimist
thumbnail
1
doc

Funktsiooni tuletise valemid

Ande Andekas-Lammutaja Matemaatika ­ Funktsiooni tuletis Funktsiooni tuletiseks nimetatakse funktsioonimuudu ja argumendimuudu suhete piirväärtust argumendi muudu lähenedes nullile. lim x xlim f ( x + x ) - f ( x ) y ' = f ' ( x ) =x 0 = 0 y x Funktsiooni tuletise valemid: ' 1 1 =- 2 x x (x 2 ) ' = 2x x ' =1 c' = 0 [cf ( x)] ' = cf ' ( x ) ( x) ' = 1 2 x

Matemaatika → Matemaatika
538 allalaadimist
thumbnail
8
doc

Kordamisküsimused aines "Matemaatiline analüüs I"

arvutamise lihtsustamiseks ning reeglina kasutatakse seda ainult selliste piirväärtuste korral, mis sisaldavad mingisugust jagatist. L'Hospitali reegel seisneb selles, et me võtame sellest avaldisest tuletise ( iseseivalt nii ülevalt kui alt, MITTE JAGATISE TULETIST). Kui seejärel määramatus ära ei kao,siis võtame veel kord tuletist. Tuletis, selle rakendused Tuletis, selle geomeetriline tähendus- Funktsiooni tuletis on funktsiooni ja argumendi muudu suhte piirväärtus argumendi muudu tõkestamatul lähenemisel nullile. Teisiti öeldes on tuletis funktsiooni muutumise kiirus ning geomeetriliselt näitab funktsiooni tuletis funktsiooni tõusu punktis, mille abtsiss on x. Tuletise arvutamine definitsiooni järgi- TULETISTE TABEL Liitfunktsiooni tuletis- Liitfunktsiooniks nimetatakse funktsiooni, mille analüütilises avaldises

Matemaatika → Matemaatika analüüs i
159 allalaadimist
thumbnail
10
docx

Kordamisküsimusi 3. teema kohta - Teooriatöö II

Kordamisküsimusi 3. teema kohta 1. Defineerida funktsiooni tuletis. Mis on diferentseeruv funktsioon ja diferentseerimine? Funktsiooni f tuletiseks punktis a nimetatakse järgmist suurust: f ( x )−f (a) f ' ( a )=lim x→ a x−a Kui funktsioon f omab punktis a lõplikku tuletist, siis öeldakse et ta on selles punktis diferentseeruv. Tuletise arvutamist nimetatakse diferentseerimiseks. 2. Esitada tuletise valem funktsiooni muudu ja argumendi muudu kaudu.

Matemaatika → Matemaatika analüüs i
5 allalaadimist
thumbnail
1
doc

Tuletised

Tuletiste tabel: 1 1 c = 0 x = 1 =- 2 x x ( x ) = 2 1 x (x ) = nx n n -1 (e ) = e x x ( ln x ) = 1 ( log a x ) = 1 (a ) = a x x ln a x x ln a (sin x ) =cos x (cos x ) =-sin x ( tan x ) = 1 ...

Matemaatika → Matemaatika
94 allalaadimist
thumbnail
0
rar

Matanalüüs esimene KT lahendatud

docstxt/130632723481019.txt

Matemaatika → Matemaatiline analüüs 2
296 allalaadimist
thumbnail
5
doc

Majandusmatemaatika kordamisküsimuste vastused

4. Mis on funktsiooni graafik? Funktsiooni f graafik on kõikide järjestatud paaride (x, f(x)) hulk, kus x on määramispiirkonna X element. 5. Mis on tasuvuspunkt. müügimaht, mille puhul tulu ja kulu on võrdsed. 6. Nõudlusfunktsioon ­ Nõutav kogus QD on toote ühikuhinna p funktsioon, mida väljendatakse QD=Q (p) Pakkumisfunktsioon ­ Pakutav kogus QS on toote ühikuhinna p funktsioon, mida väljendatakse kujul QS=Q (p) 7. Defineerida tuletis. Mis on marginaalsuurus? Mida tähendab, et marginaalkulu on 15 krooni? Mida tähendab, et marginaaltulu on 10 eurot? Mida tähendab, et marginaalkasum on 30? tuletis on funktsiooni väärtuse muudu ja argumendi muudu suhte piirväärtus argumendi muudu lähenemisel nullile. Marginaalsuurus ­ majandusnäitajatega funktsiooni tuletis Mkulu 15kr ­ tähendab ligikaudu täiendava tooteühiku tootmiseks vajalikku kogukulu muutu

Matemaatika → Majandusmatemaatika
287 allalaadimist
thumbnail
1
docx

Tuletiste tabel

Tuletiste tabel: c = 0 x = 1 1 1 =- 2 x x ( x ) = 1 ( x ) = nx n n -1 (e ) = e x x 2 x (a ) = a x x ln a ( ln x ) = 1 ( log a x ) = 1 x x ln a ( sin x ) = cos x ( cos x ) = -sin x ( tan x ) = 12 ...

Matemaatika → Matemaatika
69 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I

Tõepoolest: yo = (xo)2, y + y= (xo + x)2, y + y= (xo + x)2 ­ (xo)2 = 2 x xo + x2 , mil viisil x nullile ka ei läheneks. Uurides analoogiliselt kõiki elementaarseid põhifunktsioone, saab tõestada, et iga elementaarne põhifunktsioon on on pidev punktis, milles ta on määratud. Pidevuse tunnus: f(x) arv; ; lim y=0 Pideva funktsiooni korral lõpmata väikesele argumendi muudule vastab lõpmata väike arv. 3. Defineerida funktsiooni y = f (x) tuletis y'. Sõnastada ja tõestada funktsiooni diferentseeruvuse ja pidevuse vaheline seos. Definitsioon: Funktsiooni y=f(x) tuletiseks argumendi x järgi nimetatakse funktsiooni muudu y ja argumendi muudu x suhte piirväärtust, kui argumendi muut läheneb nullile. Funktsiooni y=f(x) tuletist punktis x tähistatakse f ' ( x ) , st f'(x) = def. ,kus muut (mis vastab argumendi muudule

Matemaatika → Matemaatiline analüüs
354 allalaadimist
thumbnail
12
docx

Matemaatika 11.klass valemid

7) lim  an  bn   lim an  lim bn n  n  n  8) lim  an  bn   lim an  lim bn n  n  n  9) lim  anbn   lim an  lim bn n  n  n  an 10) lim  lim an  lim bn n  bn n  n  11) Korrutise tuletise sõnastus ja valem (u * v ) ´ = Korrutise tuletis võrdub esimese teguri tuletise ja teise teguri korrutisega, millele on liidetud esimene tegur ja teise teguri tuletise korrutis. (u*v)’ = u’*v+u*v’ ' u 12. Jagatise tuletise sõnastus ja valem ()v =¿ Jagatise tuletis võrdub esimese

Matemaatika → Matemaatika
20 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

Moodustame integraalsumma katkevuspunktid. Teoreemid lõigul pideva funktsiooni Definitsioon Funktsiooni y=f(x) määratud integraaliks lõigul kohta. [a,b] nimetatakse piirväärtust 6. Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. x/2=arctan t ; x=2arctan t ; dx=2/1+t 2dt 7. Teoreem diferentseeruva funktsiooni pidevusest 2

Matemaatika → Matemaatiline analüüs
974 allalaadimist
thumbnail
8
doc

Konspekt eksamiks

10. Graameri reegel. Kui võrdse otsitavate ja võrrandite arvuga lineaarvõrrandite süsteemi maatriks A on regulaarne (DA0), siis on süsteemil üks lahend xj=Dj/DA (j=1,2,...,n) tingimus n=m Dj saadakse süsteemi determinandist D j-nda veeru asendamisel vabaliikmete veeruga. a11a12 . .d1. .a1n - Aj 1 a21a22 . .d 2 . .a2n xj = = A A.............. an1an 2. .d n . .ann 11. Tuletise mõiste ja sisuline tähendus, muutumise määr ja tuletis, tuletis ja kõvera kallak (st tõus või langus) Kui kohal x on f-ni y=f(x) muudu ja argumendi muudu jagatisel olemas piirväärtus argumendi muudu lähenemisel nullile, siis nim seda piirväärtust antud f-ni tuletiseks kohal x ja tähistatakse f´(x). f ( x + x) - f ( x ) f ' ( x ) = lim x 0 x y f ( x 0 + x ) - f ( x 0 ) = erinevuste suhe, y-i, x-i keskmise muudu määr. Kui x on väga väike, x x

Matemaatika → Kõrgem matemaatika
213 allalaadimist
thumbnail
1
doc

Tuletiste ja Trigonomeetria valemid

Määramatused Tähtsamad tuletised y = f ( u ) u = g( x) y = f u g x - 0 0 0 0 1 0 c = 0 0 x = 1 [ f ( x ) ] = f ( x ) ( ln f ( x ) ) Piirväärtus ( x ) = ax a n -1 [ f ( x ) ( ) ] = f ( x ) ( ) [ g ( x ) ln f ( x) ] ...

Matemaatika → Matemaatiline analüüs
120 allalaadimist
thumbnail
44
docx

Loogika konspekt

taibukas. Liigi erisuse tunnus – kõrge inteligentsiga; terava mõistusega; 2. tants: klassitunnus – vastav kunstiliik; spordiala; meelelahutuslik tegevus. Liigi erisuse tunnus – ballett; võistlustants; disko, pidu 3. vale: klassitunnus – sihilikult esitatav alusetu, tõele mittevastav väide v. teade. Liigi erisuse tunnus - Süllogism Süllogism on järelduse vorm millest kahest eeldusest saadakse tuletis. kõik lõvid (M) söövad rohtu - I eeldus kõik lehmad on lõvid - II eeldus ----- kõik lehmad söövad rohtu - tuletis S P S - väiksem termin P - suurem termin M - terminus medius (vahendaja) Reeglid: 1. Süllogismis on kolm otsustus. 2. Süllogismis on kolm terminit. 3. M+ a P- M- ; P- S+ a M- S+ a M- ----------- -------------- S+ a P- ? 4. Termin mis on eelduses täismahus (piiritlemata mahus) peaksid olema ka tuletises.

Filosoofia → Loogika
71 allalaadimist
thumbnail
4
docx

Majandusmatemaatika I KT-1

Majandusmatemaatika II KT-1 Ülesanne 1. Kui alguses on 10 töötajat, siis L =10 ja q=−3∙ 102 +150 ∙10=1200 . Kui töötajate arv suureneb 2 võrra, siis L = 12 ja q=−3∙ 122 +150∙ 12=1368 . Toodangu maht suureneb 1368-1200= 168 võrra, mis teeb suurenemise 168:2 =84 ühe töötaja kohta. Ülesanne 2. Piirkasum on kasumifunktsiooni tuletis. P' ( p )=−10 p+300 . Kui p=35, siis ' piirkasum on P ( p )=−10 ∙ 35+300=−50 . Negatiivne piirkasum tähendab, et hind ja kasum muutuvad vastassunnas. Seega tuleb kasumi suurendamiseks hinda langetada. Ülesanne 3. Külastajate arv kolmandal aastal on √ 32+ 3∙ 3+2=√20 ≈ 4,47 . Külastajate arv neljandal aastal on √ 4 2+3 ∙ 4 +2= √30 ≈ 5,48 . Külastajate muutus neljandal aastal 5,48−4,47 on

Majandus → Majandusmatemaatika I
65 allalaadimist
thumbnail
3
doc

MATEMAATILINE ANALÜÜS I

harudes. · Harjutada üliõpilasi matemaatilise sümboolikaga. Maht: 5 EAP ainepunkti, nädalatundide arv 2-0-2. Eeldusained: pole. Õppeaine sisu (orienteeruva loenguteks jaotusega): 1. Kasutatav sümboolika. Funktsiooni mõiste ja omadused. Elementaarfunktsioonid. 2. Jada piirväärtus. Arv e. 3. Funktsiooni piirväärtus. Joone asümptoodid. Lõpmata väikesed ja lõpmata suured suurused. Funktsiooni pidevus. Lõigul pidevate funktsioonide omadused. 4. Funktsiooni tuletis. Liitfunktsiooni tuletis. Pöördfunktsiooni tuletis. Parameetri-liselt esitatud funktsiooni tuletis. Ilmutamata funktsiooni tuletis. Logaritmiline diferentseerimine. Põhiliste elementaarfunktsioonide tuletised. 5. Kõrgemat järku tuletised. Leibnizi valem. Funktsiooni diferentsiaalid. Funktsiooni kasvamine ja kahanemine. Lokaalne ekstreemum. 6. Keskväärtusteoreemid. L'Hospitali reegel. 7. Taylori valem polünoomi korral. Taylori valem. Taylori valemi jääkliige. 8

Matemaatika → Matemaatika analüüs i
212 allalaadimist
thumbnail
14
docx

Diferentsiaalvõrrandite eksami konspekt

1. Diferentsiaalvõrrandi üld- ja erilahend. Väärtus ja raja ülesanne Def 1.1 Võrrandit, milles osalevad sõltumatu muutuja, tundmatu funktsioon ja selle tuletised nim diferentsiaalvõrrandiks. (1.1) F(x, y(), y'(), ...)=0 Kui otsitav funktsioon y sõltub ainult ühest muutujast, siis seda nim harilikuks diferentsiaalvõrrandiks. Kui otsitav funktsioon sõltub mitmest muutujast, siis on tegemist osatuletistega diferentsiaalvõrranditega. Kõrgema järguga tuletis dif.võr määrab ära selle võrrandi järgu. Esimest järku dif võrrand on (1.2) Def 1.2 N-järku dif.võr (1.1) üldlahendiks nim n-parameetrilist lähtuvat funktsioonide parve või peret, mis muudab võrrandi samasuseks sõltumata parameetrite väärtustest. (1.3) Dif.võr lahendamist nim selle võrrandi integreerimiseks ja selle lahendid integraaliks, lahendi graafikut nim integraaljooneks. Kui n-järku võrrandile lisada n-algtingimust: (1.4) Siis saame algväärtuseks ülesande (1.1)

Matemaatika → Dif.võrrandid
420 allalaadimist
thumbnail
4
pdf

Matemaatilise analüüsi kollokvium II spikker(2LK)

1). (Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning Definitsioon: Funktsiooni y = f (x) nimetatakse rangelt kasvavaks punktis x, kui leidub selline summa tuletis on tuletiste summa). Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad positiivne arv δ, et suvaliste x1 ϵ (x - δ; x) ja x2 ϵ (x; x + δ) korral f (x1) < f (x) < f (x2).

Matemaatika → Matemaatiline analüüs i
73 allalaadimist
thumbnail
19
doc

Loodusteaduste Matemaatika kordamisküsimused

10) Funktsiooni pidevus ja katkevus. Esineb esimest ja teist liiki katkevusi ­ kui on tegu mingi arvuga siis on esimest järku, kui lõpmatusega siis teist järku. 11) Funktsiooni tuletise mõiste. Lõikaja ja puutuja tõus. Lõikaja ja puutuja tõusud ja sellised asjd, blah, ei viici otsida seda. Loodan, et ei küsita mult :D 12) Funktsiooni tuletise füüsikaline tähendus. 13) Tuletise tehetega seotud omadused. 14) Elementaarfunktsioonide tuletised. 15) Tuletis kui funktsiooni muutumise kiirus. Protsentuaalne muutumise kiirus. Kaevake vihikutes, praxis sai tehtud seda jama küll =) 16) Funktsiooni diferentsiaal. 17) Diferentsiaali kasutamine ligikaudses arvutuses. 18) Liitfunktsiooni ja pöördfunktsiooni tuletis Paras vikat osa, kes saab aru see saab, kes ei.. njah :D suht porno teema (get it? Hah! :D) 19) Ilmutamata funktsiooni tuletis. Mõninkord on funktsioon antud kujul kus kumbagi muutujat ei ole võimalik teise kaudu avaldada

Matemaatika → Loodusteaduste matemaatika...
84 allalaadimist
thumbnail
4
docx

Loogika harjutamine

Süllogisme on erinevaid. Süllogism ehk järeldus. I Kategooriline süllogism. Saab nimetuse otsustamisest (kategooriline otsustus). Nt: I eeldus: Kõik lõvid söövad rohtu. II eeldus: Kõik lehmad on lõvid. Tuletis: Kõik lehmad söövad rohtu. Kõik lehmad(S) söövad rohtu(P). S -Subjekt on väiksem termin,P - Predikaat on suurem termin. M- lõvid- Keskmine termin. Keskmine termin seob väiksemat ja suuremat terminit omavahel, võimaldab neid võrrelda. Võrdlemisest sünnib järeldus ehk tuletis. Keskmne termin ei satu ealeski tuletisse. Tuletise subjekt on alati teisest eeldusest ehk väiksemast eeldusest. Tuletise Predikaator paikneb alati esimeses eelduses ehk suuremas eelduses. Reeglid: 1) Süllogismis on 3 otsustust. 2) Süllogismis on 3 terminit. Nt. Kõik hiired armastavad juustu. Hiir on sõna. (4terminit) Kõik suured inimesed on raskekaalulised. Makedoonia Alexander oli suur inimene.(4 terminit) Igas süllogismis on 3 terminit. Selles süllogismis on 3 terminit. (2 terminit)

Filosoofia → Loogika
39 allalaadimist
thumbnail
14
doc

Optimeerimine

tõttu. 2. Marginaalanalüüs. Kui meid huvitab, kuidas muutub kogutulu või kulu tootmismahtu suurendades (vähendades), tuleb kasutada marginaalanalüüsi (piirväärtusanalüüsi), mis uurib funktsiooni muutumist argumendi ühikulise muutuse korral. x y x y 3. Elastsusanalüüs. Uurib suhtelisi muutusi x % y % . 4.1. Funtsiooni tuletis Definitsioon Funktsiooni y(x) tuletiseks nimetatakse funktsiooni muudu y ja argumendi muudu x jagatise piirväärtust argumendi muudu lähenemisel nullile: dy y y ( x + x ) - y ( x) y´(x) = = lim = lim dx x 0 x x 0 x Funktsiooni muutumise kiirus on funktsiooni tuletis . Majanduses ja äritegevuses on olulisteks arvulisteks näitajateks keskmised suurused,

Matemaatika → Matemaatika
58 allalaadimist
thumbnail
1
odt

Teoreetiline mehaanika- Kinemaatika

Trajektoor- punktmassi liikumise tee kindlas taustsüsteemis. Liikumisseadus- Vektoriaalne määramisviis r=r(t) Koordinaatviisiline määramisviis (telef), Loomulik liikumisseadus s=f(t) Punktmass- materiaalne keha, mille mõõtmeid liikumise uurimisel ei arvestata. Punkti kiirendus- tema kohavektor esimese tuletise järgi. Kiirus- vektor, mis on suunatud piki trajektooripuutujat liikumissuunas ja isel. Kohavektori pikkuse kui ka suuna muutus. (telef) Punkti kiirendus- kiirusvektori I tuletis aja järgi ehk kohavektori II tuletist aja järgi. Kiirendus- isel. Kiiruse muutust (telef) Rööpliikumine- kui keha liigub ühest punktist teise ja sellel olevad sirged on paralleelsed. (telef) Jäiga keha selline liikumine, mille puhul iga kohaga muutumatult seotud sirge jääb kogu liikumise kestel oma algsihiga paralleelseks. Ühe punkti liikumine tähendab kogu keha liikumist. Pöörlemine- telef. Pöörleva keha punkti kiirus on risti trajektoori

Mehaanika → Teoreetiline mehaanika
76 allalaadimist
thumbnail
2
doc

Matemaatiline analüüs

Gradientvektor e gradient. gradz s Z=(x; y) grad z=(z/x; z/y) ja s°=(cos; cos) ning z/s=grad zs° (joon) cos = gradz s gradz s cos = grad zs°=grad zcos z/s=grad zcos. Kahe muutuja f-ni z tuletis vektori s suunas on gradz võrdne selle f-ni grad-vektori projektsiooniga vektorile s. Kahe muutuja f-ni tuletis suunas mis on risti grad-ga, võrdub nulliga. (Kui =0 siis cos=1). Kahe muutuja f-ni tuletis on suurim g-vektori suunas ja arvuliselt võrdne selle g-di pikkusega. Kahe muutuja lokaalsed ekstreemumid z=(x; y) Def1: z=(x; y) on punktis P1(x1; y1) lok max kui sellel punktil leidub niisugune ümbrus et iga punkti korral sellest

Matemaatika → Matemaatiline analüüs
266 allalaadimist
thumbnail
3
doc

Füüsika definitsioonid

Naturaalarv - Naturaalarv on sõltuvalt kontekstist kas üks arvudest 1, 2, 3, ... või üks arvudest 0, 1, 2, 3, ...; kõikide naturaalarvude hulka tähistatakse sümboliga N. Naturaalarvude kaks põhilist otstarvet on loendamine ja järjestamine. Täisarv - Täisarv on arv, mis on esitatav naturaalarvude vahena. kasutatakse indeksitena mitmekomponendiliste objektide (maatriksid, vektorid, tensorid etc.) juures ning arvuridade kirjapanekul (summeerimisindeksid). Kõikide täisarvude hulka tähistatakse tavaliselt sümboliga Z. Täisarvude hulgal on defineeritud liitmine, lahutamine ja korrutamine ning lineaarne järjestus. Täisarve ei saa jagada, sest siis pole tulemuseks enam täisarv. Ratsionalarv ­ arv, mida saab esitada kujul a/b , kus a ja b on täisarvud ning b0 . Ratsionaalarvude tähis on Q. Kompleksarvude hulk- Kompleksarvud on algebraline süsteem, mis lubab kirja panna suvalise astme võrrandi lahendeid. Koosneb reaal- osast (tavaline reaalarv) j...

Füüsika → Füüsika
42 allalaadimist
thumbnail
4
pdf

Eksam matemaatikas vastustega

Arvu A nim. funktsiooni y=f(x) piirväärtuseks arguendi x lähenemisel miinus lõpmatusele, kui f(x) läheneb arvule A kui tahes väikeste argumendi x väärtuste korral.3.Öeldakse et funktsiooni y=f(x) piirväärtuseks kohal a on lõpmatus, kui korral kasvavad funktsiooni f(x) väärtused kuitahes suureks.4.Öeldakse, et funktsiooni y=f(x) piirväärtuseks kohal a on kui korral kahanevad funktsiooni f(x) väärtused kui tahes väikseks. 11. Defineerige funktsiooni y=f(x) tuletis argumendi x järgi ( ) ( ) ( ) Nimetatakse funktsiooni y=f(x) tuletiseks arguendi x suhtes. Suurust nimetatakse argumendi x muuduks. Suurust nim. funktsiooni uuduks üleminekul punktist x punkti Funktsiooni tuletise leidmist nimetatakse funktsiooni diferentseerimiseks. 12. Milline on funktsiooni tuletise füüsikaline ja geomeetriline tähendus?

Matemaatika → Matemaatika
18 allalaadimist
thumbnail
1
rtf

Matemaatika tuletiste tabel 11 klass

y = f (x) y' = f ' (x) c 0 Kontstandi tuletis on null. x 1 Argumendi tuletis on üks. x² 2x x³ 3x ² x nx -¹ Astmete tuletis on astendaja korrutatud ühe võrra väiksema astendaja astmega. f (x) + g (x) f '(x) + g '(x) Summa tuletis on liidetavate tuletiste summa. f (x) · g (x) f '(x) · g (x) + g '(x) · f (x) Korrutise tuletis on esimese teguri tuletis korruatatud teise teguriga liita teise teguri tuletis korrutatud esimese teguriga. f (x) f '(x) · g (x) - g '(x) · f (x) Murru tuletis on murd mille nimetajaks on

Matemaatika → Matemaatika
113 allalaadimist
thumbnail
5
docx

KÕIK Kollokvium II kohta. 1.10-1.16

1.10 Funktsiooni tuletis DEF 1.Funktsiooni y=f(x) tuletiseks kohal x nim. funktsiooni y=f(x) muudu y ja argumendi muudu x suhte piirväärtust, kui argumendi muut läheneb nullile. f´(x)=limy/x, piirprotsessis x->0 DEF 2. Kui funktsioonil f(x) on tuletis kohal x, siis öeldakse, et funktsioon on diferentseeruv punktis x. f´(x0) <->f(x) D(x0) DEF 3. Funktsiooni y=f(x) parempoolseks tuletiseks kohal x nim. suurust f´(x+)=limy/x, piirprotsessis x->0+ DEF 4. Funktsiooni y=f(x) vasakpoolseks tuletiseks kohal x nim. suurust f´(x-)=limy/x, piirprotsessis x->0- Funktsiooni tuletis: Lause 1. Funktsiooni f(x) diferentseeruvusest punktis x järeldub selle funktsiooni pidevus punktis x,st Tõestus

Matemaatika → Matemaatiline analüüs
78 allalaadimist
thumbnail
9
doc

INTEGREERIMISE VALEMID

u v ­ v u u = v v2 = v x v2 f ( x) dx = ln f ( x) + c Parameetrilisel kujul antud funktsiooni tuletis, kus x = (t) ja y = (t) yt ( y x ) t y txt ­ y t xt y x = ja y x = y x = xt xt ( xt ) 3 Nr Diferentseerimise valemid Diferentseerimise valemid Integreerimise valemid Lihtfunktsioon Liitfunktsioon 1 (C)'=0 0 dx = c

Matemaatika → Matemaatiline analüüs
109 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

.., f(xn). Kui vaadeldaval funktsioonil on selline omadus, et arvuks a koonduva mis tahes argumentide jada x1, x2, ..., xn korral vastav funktsiooni väärtuste jada f(x1), f(x2), ..., f(xn) koondub alati arvuks A, siis öeldakse, et see arv A on funktsiooni y = f(x) piirväärtuseks ja kirjutatakse kujul: 30. Ühe muutuja funktsiooni tuletise ja diferentsiaali mõisted. Kõrgemat järku tuletised. Ühe muutuja funktsiooni tuletis ­ kui leidub lõplik piirväärtus: siis seda nim funktsiooni f tuletiseks kohal x ja tähistatakse sümboliga f' või y'. Ühe muutuja funktsiooni diferentsiaal ­ kui funktsioonil on lõplik tuletis mingi piirkonna igas punktis, siis kõneldakse ka diferentseeruvast funktsioonis vaadeldavas piirkonnas. Kui leidub f'(x) ja x, siis diferentsiaaliks dy loetakse suurust dy=f'(x)* x. Kui y = x, siis dy = dx.

Matemaatika → Kõrgem matemaatika
358 allalaadimist
thumbnail
3
doc

Funktsiooni tuletiste valemid

Valemid ja Mõisted Funktsiooni f(x) tuletis kohal x: f ( x + x) - f ( x) f ( x) = lim x 0 x Funktsiooni jagatise tuletis u u v - uv = v v2 Funktsiooni summa tuletis (u+v)'=u'+v' Funktsiooni korrutise tuletis (c*u)'=c*u' (u*v)'=c'u+cu' Astmefunktsiooni tuletis (xa)'=axa-1 (x)'=1/(2x) Trigonomeetriliste funktsioonide tuletised Logaritmfunktsiooni tuletised (logax)'=1/(x ln a) (lnx)'=1/x Eksponent funktsiooni tuletised (ax)'=axln a (ex)'=ex Liitfunktsioon F ( x) = f (u ) g ( x) Veel reegleid funktsioonide tuletiste kohta: x = 1 1 1 = 2 x x c = 0 Trigonomeetrilised põhivõrrandid sin x = m, x = ( -1) arcsin m + n, n Z n

Matemaatika → Matemaatika
485 allalaadimist
thumbnail
10
doc

Mathcad õppematerjal

f ( x) -3 x - 6 x dx 2 -6 x - 3 x <-tuletis väljakirjutatult (selekteeri x, Symbolics->Variable->Solve) 0 - 2 <-ekstreemumid d t( x) := f ( x) dx <-märgi ära et t(x) on tuletis f(x) t ( -2) 0 f ( -2) -2 <-kontrollime ja arvutame funktsiooni väärtused ekstreemumitel t( 0) 0 f ( 0) 2 10 <-funktsiooni lokaalne maksimum on (0,2)

Matemaatika → Matemaatiline analüüs 1
142 allalaadimist
thumbnail
2
docx

Kollokvium II

1.10 Funktsiooni tuletis DEF 1.Funktsiooni y=f(x) tuletiseks kohal x nim. funktsiooni y=f(x) muudu y ja argumendi muudu x suhte piirväärtust, kui argumendi muut läheneb nullile. f´(x)=limy/x, piirprotsessis x->0 DEF 2. Kui funktsioonil f(x) on tuletis kohal x, siis öeldakse, et funktsioon on diferentseeruv punktis x. f´(x0) <->f(x) D(x0) DEF 3. Funktsiooni y=f(x) parempoolseks tuletiseks kohal x nim. suurust f´(x+)=limy/x, piirprotsessis x->0+ DEF 4. Funktsiooni y=f(x) vasakpoolseks tuletiseks kohal x nim. suurust f´(x-)=limy/x, piirprotsessis x->0- 1.11 Liitfunktsiooni tuletis. Pöördfunktsiooni tuletis. Parameetriliselt esitatud funktsiooni tuletis. Ilmutamata funktsiooni tuletis. Logaritmiline diferentseerimine.

Matemaatika → Matemaatiline analüüs
143 allalaadimist
thumbnail
6
doc

Määramata integraal

MÄÄRAMATA INTEGRAAL a) funktsioonid ja algfunktsioonid · Kui meil on teada funktsiooni tuletis, kuid peame leidma funktsiooni, millest selline tuletis saadud on, siis peame kasutama toimingut, mida nimetatakse INTEGREERIMISEKS · INTEGREERIMINE on tuletise võtmise pöördtehe: meil on ette antud tuletis ja me peame leidma selle kaudu funktsiooni, millest selline tuletis on saadud. Funktsiooni, millest tuletis on võetud, nimetatakse ALGFUNKTSIOONIKS. LÄHENEME NÜÜD ASJALE MATEMAATILISELT Def: Funktsioon F(x) on funktsiooni f(x) algfunktsioon hulgal X , kui iga xX korral kehtib võrdus: dF ( x) = f ( x) dxfunktsioon saab olla mingile Definitsioon ütleb, et mingi ehk teisele F'(x) =funktsioonile

Matemaatika → Matemaatiline analüüs
325 allalaadimist
thumbnail
5
docx

Kordamisküsimused aines "Matemaatiline analüüs I"

n xa Lõpmata väikeste suuruste omadused: Lõpliku arvu lõpmata väikeste suuruste summa on lõpmata väike suurus. Tõkestatud muutuva suuruse ja lõpmata väikese suuruse korrutis on lõpmata väike suurus. Lõpliku arvu lõpmata väikeste suuruste korrutis on lõpmata väike suurus. Arv e. Piirväärtuse arvutamine. L'Hospitali valem, selle kasutamise eeldused. Tuletis, selle rakendused Tuletis, selle geomeetriline tähendus. Funktsiooni tuletis on funktsiooni ja argumendi muudu suhte piirväärtus argumendi muudu tõkestamatul lähenemisel nullile. Geomeetriline tähendus ­ ülesanne joone puutujast See tähendab, et funktsiooni tuletise geomeetriliseks vasteks on funktsiooni graafiku puutuja tõus punktis, mille abstsiss on x. Mehaaniline tähendus ­ ülesanne punkti kiirjusest Tuletise arvutamine definitsiooni järgi. Funktsiooni tuletise leidmist nimetatakse ka diferentseerimiseks. Tuletise leidmiseks on vaja: 1

Matemaatika → Matemaatiline analüüs i
26 allalaadimist
thumbnail
5
docx

Sõnamoodustuse küsimused

c) TÄHENDUS Vormimoodustus on ka semantiliselt regulaarne: muutetunnuse grammatiline tähendus on kõigi lekseemide puhul ühesugune. Tuletusliitel ei ole enamasti üht kindlat tähendust, sama liitega moodustatud tuletiste moodustustähendus võib varieeruda. d) SÕLTUVUS SÜNTAKSIST Vormimoodustus sõltub suures ulatuses süntaksist, sõnamoodustus mitte. Lausekontekst võib nõuda teatud muutevormi valikut, seevastu võib tuletis esineda lauses igas positsioonis. e) JÄRJESTUS Muutemorfeemide ja tuletusmorfeemide järjestus sõnavormis on määratud: sõnavormis on tuletusmorfeemid juurmorfeemile lähemal kui muutemorfeemid (vormitunnused järgnevad liidetele) 17. TÜVEKUJU e sõnatüve fonoloogiline kuju on sõna fonoloogiline väljendusvorm. Viitab sõna struktuuritüübile. Noomeni ja verbi lihttüved on sarnase fonoloogilise koostisega. Tüüp

Eesti keel → Eesti keele sõnamoodustus
24 allalaadimist
thumbnail
2
doc

Tuletise moodustamine ja mõningad seosed

TULETIS · Tuletise moodustamine: On antud funktsioon y = f ( x) . Järgnevalt on vaja leida funktsiooni muut: y = f ( x + x) - f ( x ) Seejärel lihtsustada muudu valemit. Lõpuks on vaja leida funktsiooni piirväärtus, mis ühtlasi on ka tuletis. Tuletist märgitakse [y']-ga. y f ( x + x ) - f ( x ) y ' = lim = lim x x x x Pärast koondamist ja taandamist lähendada või panna x võrduma nulliga. Nii kaob funktsioonist x ära. Järelejäänud avaldis ongi tuletis. NÄIDE: 1 Funktsioon: y = x 1 1 Muut: y = - ( x + x ) x

Matemaatika → Matemaatika
87 allalaadimist
thumbnail
2
pdf

Kollokvium I, 2012

17. Tõestada Weierstraß'i teoreem lõigus pideva funktsiooni ekstremaalsetest väärtustest. 16. Tõestada Weierstraß'i teoreem lõigus pideva funktsiooni tõkestatusest. 18. Tõestada Bolzano-Cauchy teoreem vahepealsetest väärtustest. Lõigul [a, b] pidev f-n f(x) on tõkestatud sellel lõigul st selle fun-ni väärtuste hulk sellel lõigul Y - 19. Näidata, et funktsioonil f (x) leidub tuletis punktis a parajasti siis, kui punkti a ümbruses f = {f(x)| x [a, b]} on tõkestatud. (x) on esitatav kujul (siin A = f `(a)) f (x) = f (a) + A(x - a) + o(x - a), kus limxa o(x-a)/x-a = 0 Olgu f(x) C[a; b]. Eeldame väitevastaselt, et funktsioon f (x) on tõkestamata sellel lõigul, st 20. Näidata, et mingis punktis diferentseeruv funktsioon on pidev selles punktis. suvalise n N korral leidub selline

Matemaatika → Matemaatika analüüs i
122 allalaadimist
thumbnail
4
pdf

Matemaatiline analüüs I teine teooria

Δ→0− Δx 5.Liitfunktsioon:  ​Kui funktsioonidel  u=f(x)  ja  y=g(u)  eksisteerivad lõplikud tuletised vastavalt  kohtadel  x ja f(x), siis liitfunktsioonil  y=g(f(x))  on  lõplik tuletis kohtadel x, kusjuures g´(f(x))*f´(x)  6.  Pöördfunktsiooni  tuletis:  ​ Kui  lõigul  [a;b]  pideval  ja  rangelt  monotoonsel  funktsioonil  y=f(x)   on  kohal   x   nullist  erinev  tuletis,   siis  pöördfunktsioonil x=f​ (y) leidub tuletis kohal f(x), kusjuures dx ­1​ 1 dy = dy   dx 7

Matemaatika → Matemaatiline analüüs
43 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun