Ühe muutuja funtsiooni diferentsiaal- ja integraalarvutuse põhivalemid Funktsioon Diferentseerimisvalem Põhiintegraal Konstant a '=0 adx =axC n-1 n1 Astmefunktsioon x ' ' ' =nx x x ' ' dx = n1 C 1 2 x '= 2 x xdx = 3 x 3C x x x Eksponentfunktsioon a ' =a ln a a x dx= lna a C e x dx=e...
argumendi väärtuste hulka, mille korral saab leida f-ni väärtust. Funktsiooni muutumispiirkonnaks nim. funktsiooni väärtuste hulka. Paaris funktsiooni graafik on sümmeetriline y-telje suhtes. Paaritu funktsiooni graafik on sümmeetriline koordinaatide alguspunkti suhtes. Funktsiooni nullkohaks nim. argumendi väärtust, mille korral funktsiooni väärtus võrdub 0-ga. y = 0 Funktsiooni positiivsuspiirk. nim. argumendi väärtuste hulka, mille korral funktsiooni väärtused on positiivsed. y > 0 Funktsiooni negatiivsuspiirk. nim. argumendi väärtuste hulka, mille korral funktsiooniväärtused on negatiivsed. y < 0 ____________________________________________________________________________________________ Funktsiooni pöördfunktsiooni leidmiseks tuleb a.) vahetada muutujad x ja y b.) saadud avaldisest avaldada y Funktsiooni graafik ja tema pöördfunktsiooni graafik on sümmeetrilised...
Funktsioon- kui muutuva suuruse x igale väärtusele, mis kuulub tema muutumispiirkonda, vastab teise suuruse y üks kindel väärtus, siis öeldakse, et y on x funktsioon. 2. Elementaarne põhifunktsioon- elementaarseteks põhifunktsioonideks nim. järgmisi analüütiliselt antud funktsioone: konstantne funktsioon y = c; astmefunktsioon y = xa ; eksponentfunktsioon y = ax , kus a on ühest erinev pos. arv; logaritmfunktsioon ; trigonomeetrilised funktsioonid; arkusfunktsioonid; 3. Elementaarfunktsioon- funktsioon, mis saadakse põhielementaarfunktsioonidest lõpliku arvu aritmeetiliste tehete ja liitfunktsioonide moodustamise tulemusena. 4. Tõkestatud funktsioon- funktsiooni f(x) nim. tõkestatuks piirkonnas A, kui leidub selline reaalarv k, nii et | f(x) | <= k iga x A korral. 5. Perioodiline funktsioon- funktsiooni f(x) nim. perioodiliseks, kui leidub selline nullist erinev re...
Nende väärtuste hulka nimetatakse muutuva suuruse muutumispiirkonnaks. Funktsioon f on eeskiri, mis seab ühe muutuva suuruse x igale väärtusele tema muutumispiirkonnast X vastavusse teise muutuva suuruse y kindla väärtuse selle muutumispiirkonnast Y. Arvu x nimetatakse funktsiooni f argumendiks ehk sõltumatuks muutujaks ja hulka X funktsiooni f määramispiirkonnaks, arvu y nimetatakse funktsiooni väärtuseks ehk sõltuvaks muutujaks ja hulka Y funktsiooni väärtuste hulgaks. Loetleme siinkohal üles põhilised elementaarfunktsioonid: 1) konstantne funktsioon y = c ; 2) astmefunktsioon y = x , kus on reaalarv; 3) eksponentfunktsioon y = a x , kus a on ühest erinev positiivne arv ( a > 0, a 1) ; 4) logaritmfunktsioon y = log a x , kus a on ühest erinev positiivne a...
Naturaalarvud, täisarvud, ratsionaalarvud, irratsionaalarvud, reaalarvud. Naturaalarvud arvud, mis saadakse loendamise teel, tähistatakse: IN (1, 2, 3, 4, 5, 6, ..., ) Täisarvud kõik naturaalarvud ja nende vastandarvud ning lisaks 0, tähistatakse Z m Ratsionaalarvud on sellised reaalarvud, mida saab esitada kahe täisarvu m ja n jagatisena nii et n n 0 . Igal ratsionaalarvul on ka lõpmatu kümnendmurdarendus ja see on alati perioodiline, tähistatakse Q Irratsionaalarvud mitteperioodilised lõpmatud kümnendmurrud. Tähistus I Reaalarvud hulk R, koosneb kõikidest ratsi...
Reaalarvu a absoluutväärtuseks nim mittenegatiivset reaalarvu IaI, mis on defin seosega IaI=a, kui a0,,-a, kui a0 Arvu a ümbruseks, kus > 0, nimetatakse hulka U(a)={xIa-x} Reaalarvu a parempoolseks ümbruseks, kus > 0, nimetatakse hulka [a; a + ) = {xIax+a} Suuruse + M-ümbruseks, kus M > 0, nimetatakse vahemikku (M;+). Kui M > 0, siis M-ümbruseks nim ühendit (-;-M) ja(M) Muutuvat suurust nimetatakse tõkestatuks, kui leidub niisugune konstant M0, et kõik muutuva suuruse väärtused, alates mingist x M väärtusest, täidavad tingimust - M x M , s.t. . FUNKTSIOON:. . Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Esitusviisid: Tabel, Analüütilisel kujul esitatud funktsiooni määramispiirkonnaks nimetatakse argumendi kõigi väärtuste hulka, mille korral see valem on määratud.; F.gaafikuks nim punktihulk...
Seda kindlat arvu nimetatakse aritmeetilise arvu jadaks ja tähistatakse tähega d. an=a1+(n-1)d an+1=an+d » an+1-an=d sn= a1+an/2 x n või sn=2a1+(n-1)d/2 Geomeetriline jada- Jada, mille iga liige alates teisest on võrdne eelneva liikme ja antud jada jaoks mingi kindla arvu korrutisega nimetatakse geomeetriliseks jadaks. Seda kindlat arvu nimetatakse teguriks ja tähistatakse tähega q n-1 n an=a1 x q q=an+1/n sn=a1(q -1)/q-1 Lõpmatult kahaneva geomeetrilise jada summa- S=a1/1-q Arvu ,,A" nimetatakse jada ,,an" tõkestamatul kasvamisel ja tähistatakse sümboliga liman=A n lim1/n=0 Piirväärtus n (tõkestamatul kasvamisel) läheneb nullil...
Kordamisküsimused aines "Matemaatiline analüüs I" Funktsioon Funktsioon Kui hulga x igale elemendile on mingi eeskirjaga seatud vastavusse hulga y kindel elementi ,siis öeldaks, et hulgale x on defineeritud funktsioon. Funktsiooni y argumendiks e sõltumatuks muutujaks nimetatakse muutujat x . Sõltuvaks muutujaks nimetatakse funktsiooni y Funktsiooni määramispiirkond- Funktsiooni y määramispiirkonnaks nimetatakse argumendi x muutumispiirkonda, see on nende x väärtuste hulk, millas funktsiooni avaldis on arvutatav. Funktsioonide liigid- Funktsioone võime jagada: 1. Paaris ja paaritu funktsioonid · Paarisfunktsioon on funktsioon, kus iga x-i korral f(x)= f(-x)(sümmeetriline y-telje suhtes). · Paaritu funktsioon on funktsioon, kus iga x-i korral f(x)= - f (x) ( muutuma peavad kõik märgid) (sümmeetriline 0 punkti suhtes). 2. Perioodiline funktsioonid ·...
Kui muutuja x igale väärtusele hulgas X vastab muutuja y üks kindel väärtus, siis öeldakse, et y on muutuja x funktsioon. Asjaolu, et üks muutuja on teise funktsioon, tähistatakse y = f (x), y = y (x), y = (x) jne. Muutujat x nimetatakse seejuures sõltumatuks muutujaks e. argumendiks. Muutujat y, mille väärtused leitakse vastavalt sõltumatu muutuja väärtustele, nimetatakse sõltuvaks muutujaks. Argumendi x väärtuste hulka, mille puhul saab määrata funktsiooni y väärtusi vastavalt eeskirjale f (x), nimetatakse funktsiooni määramispiirkonnaks. Määramispiirkonnale vastavat funktsiooni väärtuste hulka nim. funktsiooni muutumispiirkonnaks. 2 Funktsiooni esitusviise Funktsiooni esitus tabelina x x1 x2 ....... xn y y1 y2 ...... yn Funktsiooni graafiline esitusviis y...
Punkti a ümbruseks raadiusega > 0, nimetatakse arvtelje
vahemikku arvust a - kuni a + .
a- a a+
x
Ehk arv x kuulub arvu a ümbrusesse raadiusega , kui
a-
DIFERENTSEERIMISE ja INTEGREERIMISE VALEMID y dy Tuletis y = lim = = f ( x) x 0 x dx Integraal f ( x)dx = F ( x) +c , kus d [ F ( x) + c ] = f ( x)dx Diferentseerimise reeglid Diferentseerimise reeglid Integreerimise reeglid Lihtfunktsioon y=(x) Liitfunktsioon y=(u), u=(x) (u +v)'=u'+v', kus u,v=(x) (ux +vx)'=ux'+ vx' (u + v)dx = u dx + v dx (u v)'=u' v' (ux vx)'=ux' vx' (u v)dx = u dx v dx ( u·v ) ' = u'v + v'u (ux·vx)'=ux'v+ vx'u u dv = uv v du ( C·u ) ' = C u' ( C·ux ) ' = C ux' Cu dx= C u dx (u·v·w)' = u'vw + v'uw + w'uv...
Määramispiirkond, väärtuste hulk. Pöördfunktsioon. Seaduspärasust või teisendust, mis igale X elemendile x seab vastavuse ühe hulga Y elemendi y nim. argumendi x funktsiooniks ja kirjutatakse y=f(x) Funktsiooni y=f(x) määramispiirkonnaks on kõigi nende argumendi x väärtuste hulk, mille korral funktsioon omab mõtet ja on lõpliku väärtusega. Funktsiooni väärtuste hulgaks nim. nende väärtuste hulka, mida funktsioon omandab, kui läbib kogu määramispiirkonna. Tingimused, mis peavad olema täidetud elementaarfunktsioonide kaudu esitatud reaalmuutuja funktsioonil: B ( x) 1) A( x) 0 A( x) 2) 2 x A( x) A( x) 0 3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsioo...
MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü...
klass a1 b1 c1 1. Reaalarvude piirkonnad kui D = 0; D x = 0; D y = 0, siis = = a 2 b2 c 2 2. Astme mõiste üldistamine a m a n = a m +n c)pole lahendeid a1 b1 c a m : a n = a m -n , kui m > n kui D = 0; D x 0; D y 0, siis = 1 a 2 b2 c 2 ( a b) n = a n b n n 12. Ruutvõrrandi süsteemid a an 13. Kolmerealine determinant = n , kui b 0 b b...
Valemid ja Mõisted Funktsiooni f(x) tuletis kohal x: f ( x + x) - f ( x) f ( x) = lim x 0 x Funktsiooni jagatise tuletis u u v - uv = v v2 Funktsiooni summa tuletis (u+v)'=u'+v' Funktsiooni korrutise tuletis (c*u)'=c*u' (u*v)'=c'u+cu' Astmefunktsiooni tuletis (xa)'=axa-1 (x)'=1/(2x) Trigonomeetriliste funktsioonide tuletised Logaritmfunktsiooni tuletised (logax)'=1/(x ln a) (lnx)'=1/x Eksponent funktsiooni tuletised (ax)'=axln a (ex)'=ex Liitfunktsioon F ( x) = f (u ) g ( x) Veel reegleid funktsioonide tuletiste kohta: x = 1 1 1 = 2 x x c = 0 Trigonomeetrilised põhivõrrandid sin x = m, x = ( -1) arcsin m + n, n Z n cos x = m, x = ±arccos m + 2n, n Z tan x = m, x = arctan m + n, n Z cot x = m, x = arc cot m...
analüüsi eksami küs. vastused: OSA 1 1. Millisel tingimusel nimetatakse sümbolit x muutujaks mingis hulgas X? Kui sümbol x tähistab hulga X suvalist elementi, siis nimetatakse sümbolit x muutujaks hulgas X 2. Tooge hulkade kohta 2 näidet! y fx () Reaalarvude-, kompleksarvude-, vektorite-, maatriksite-, kaubahalli kauba hulk. 3. Mis on operaator? Tooge 2 näidet! Eeskirja f(f()fx()) , mis näitab kuidas leida muutuja x väärtusele hulgas X vastavat muutuja x hulgas Y, nimetatakse operaatoriks. väärtust f ( x) Näited: aritmeetilised tehted reaalarvudega, aritmeetilised tehted kompleksarvudega, tehted vekto...
osa 1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. Mitmem~ o~ otmelise ruumi definitsioon. Hulka, mille elementideks on k~oik m reaalarvust koosnevad j¨arjestatud s¨ usteemid (a1 , a2 , . . . , am ), nimetatakse m- m~o~ otmeliseks ruumiks, s¨ usteemi A = (a1 , a2 , . . . , am ) selle ruumi punktiks ja arve a1 , a2 , . . . , am punkti A koordinaatideks. m-m~ o~ otmelist ruumi t¨ahistame umboliga Rm . s¨ Ruumi Rm punkte A = (a1 , a2 , . . . , am ) ja B = (b1 , b2 , . . . , bm ) nimetatakse v~ ordseteks ja kirjutatakse A = B, kui nende koordinaadid on v~ordsed, st a1 = b1 , a2 = b2 , . . . , am = bm . Nullpunktiks ehk koordinaatide alguspunktiks ruumis Rm nimetatakse punkti O = (0, 0, . . . , 0). Kaugus ruumis Rm . Olgu ruum...
-a. su¨gissemestril 3,5 AP 4 2-0-2 E S Dots. Lembit Pallas TTU¨ Matemaatikainstituut V-404, tel. 6203056 e-post: lpallas@staff.ttu.ee K¨asitletavad teemad on toodud punktide kaupa. Neid punkte tuleb vaadelda ka kui kollokviumide ja eksami teooriak¨ usimusi. 1. Funktsiooni m~oiste ja esitusviisid 2. Funktsioonide liigitamine (paaris- ja paaritud funktsioonid, perioodilised funktsioo- nid, kasvavad ja kahanevad funktsioonid) 3. P¨o¨ordfunktsioon 4. Liitfunktsioon 5. Jada piirv¨aa¨rtus 6. Funktsiooni piirv¨aa¨rtus ¨ 7. Uhepoolsed piirv¨aa¨rtused 8. L~opmatult kasvavad ja l~opmatult kahanevad suurused 9. Piirv¨a¨artusteoreemid 10. L~opmatult kahanevate suuruste v~ordlemine 11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfu...
Muutuvad suurused.
Def. 1 *Suurusi, mis omand erinevaid väärtusi(vaadeldavas protsessis) nim
muutuvateks suurusteks. *Suurusi, mis omand. konstantseid püsivaid väärtusi
nim jäävateks suurusteks e. konstantideks. *Tähistus: x,y,z...u,v,w,t *NT
ühtlane liikumine-> kiirus konstantne v, teepikkus ja aeg muutuvad *Muutuvad
suurused on tavaliselt reaalarvud-> geom võime esitada sirgel *absoluutsed
konstandid- mistahes protsessis vaadeldavad suurused: =3,14..., e =2,71
1. väärtused on diskreetsed x: x1,x2,x3 (arvjada) 2. väärtused omand pideva
alamhulga reaalteljel (+joonised!): *X={x IR|axib} lõik * X={x IR|a
Funktsioon: Funktsiooni mõiste. Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Funktsioone tähistatakse tavaliselt tähtedega f; g; u; v; ; jne. Olgu antud funktsioon f mille argumendiks on x ja s~oltuvaks muutujaks y. Muutuja y väärtust milleks funktsioon f kujutab argumendi x nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega, me võime kirjutada seose y = f(x) ; (1.1) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Mõnikord kasutatakse funktsiooni ja sõltuva muutuja tähistamiseks ühte ja sama sümbolit. Sellisel juhul seos (1.1) omab kuju y = y(x). Argumendi x muut...