Aga metallis struktuuris võib esineda elektrokeemilisi ühendeid, ilma et sulamite metallilised omadused oleksid häiritud. Eelkõige võib siin märkida vase hapnikurikastes struktuurides oleviad oksiide (Cu20), automaaditeraste struktuuris hajutatud sulfiide (MnS), millel on oma kristallvõre. Intermetallid ehk intermetallsed ühendid - moodustuvad erinevate metallide vahel. Metallide aatomite mõõtmete märgatava erinevuse korral (aatomite raadiuste suhe 1,2) moodustuvad sisendusfaasidena tuntud keemilised ühendid ehk nn Lavesi faasid, mille koostis avaldub valemiga AB2, nt MgZn2, MgCu2 ja MgNi2. Elektronühendid kui metallide aatomi raadiused erinevad vähe, on kalduvus elektronühendite tekkimisele. Elektronühendid moodustuvad sagedamini ühelt poolt ühevalentsete metallide (Cu, Ag, Au jt) ning üleminku gruppide metallide (Mn, Fe, Co jt) ja teisalt tavaliste kahe- kuni viievalentsete metallide (Be, Mg, Zn, Cd, Al) vahel. Seda tüüpi
Autorid: Priit Kulu Jakob Kübarsepp Enn Hendre Tiit Metusala Olev Tapupere Materjalid Tallinn 2001 © P.Kulu, J.Kübarsepp, E.Hendre, T.Metusala, O.Tapupere; 2001 SISUKORD SISSEJUHATUS ................................................................................................................................................ 4 1. MATERJALIÕPETUS.............................................................................................................................. 5 1.1. Materjalide struktuur ja omadused ...................................................................................................... 5 1.1.1. Materjalide aatomstruktuur........................................................................................................... 5 1.1.2. Materjalide omadused .........................
liitaine- koosneb erinevatest keemilistest elementidest. Näiteks: vesi, lubi, süsinikdioksiid. Nii liht- kui liitained võivad esineda gaasilises, vedelas või tahkes olekus. 5. Tahkes aines on molekulid tihedalt koos ja nende liikumine pole võimalik. Vedelikus on molekulide vaheline kaugus mõnevõrra suurem ja nad võivad üksteisest mööduda. Gaaside puhul on molekulide vaheline kaugus suur ja nad võivad täiesti vabalt liikuda. Molekulidevahelised jõud on väikesed. . 6. Füüsikalisi omadusi saab mõõta ja jälgida ilma ainet ja tema koostist muutmata (värvus, sulamistemperatuur, keemistemperatuur ja tihedus). Keemilised omadused, on seotud aine koostise muutusega, keemiliste reaktsioonidega (vesiniku põlemine hapnikus). 7. Materjal on keemilisest seisukohast mistahes keemiline aine, mille kasutamisel (töötlemisel) ei toimu keemilisi muutusi. Keemiliste omaduste olulisus sõltub vastava
1. Elemendi ja lihtaine mõisted ja nimetused ning nende mõistete õige kasutamine praktikas. Süsteemsuse olemus ja süsteemse töötamise vajalikkus inseneritöös. Näiteid praktikast. Milline on süsteemne materjalide korrosioonitõrje? Keemiline element ehk element on aatomituumas sama arvu prootoneid omavate (ehk sama aatomnumbriga) aatomite klass. Lihtaine on keemiline aine, milles esinevad ainult ühe elemendi aatomid, keemilises reaktsioonis ei saa seda lõhkuda lihtsamateks aineteks. Lihtaine valemina kasutatakse vastavate elementide sümboleid (üheaatomilised: Fe, Au, Ag, C, S; kaheaatomilised: H2, O2, F2, Cl2, Br2). Enamik elementidele vastavaid lihtaineid on toatemperatuuril tahked ained või gaasid. Mõistete kasutamine: Segadust tekitavad mitmed asjaolud:1) Aatomite liigil ja nendest moodustunud lihtainetel on enamikel juhtudel ühesugune
1. Mateeria ja aine mõisted. 11. Tahkete materjalide klassifikatsioon. Mateeria- kogu meid ümbritseva maailma mitmekesisus oma nähtuste ja n Tahked materjalid (aluseks keemiline koostis): asjade koguga. 1) metallid; Mateeria peamised avaldumisvormid on aine ja kiirgus. 2) keraamika; Aine on mateeria eksisteerimise vorm, mis omab kindlat või 3) polümeerid; püsivat koostist ja iseloomulikke omadusi (vesi, ammoniaak, kuld, hapnik). 4) komposiidid- 2 või enamat materjali koos; 5) kõrgtehnoloogilised nn. "advanced" materjalid-pooljuhid, biomaterjalid, targad ("smart") materjalid, nanotehnoloogilised materjalid. 2. Keemilise elemendi mõiste.
Kordamisküsimused 2016/2017 õppeaastal YKI 3030 Keemia ja materjaliõpetus 1. Mateeria ja aine mõisted. Mateeria- kogu meid ümbritseva maailma mitmekesisus oma nähtuste ja asjade koguga. Mateeria peamised avaldumisvormid on aine ja kiirgus. Aine on mateeria eksisteerimise vorm, mis omab kindlat või püsivat koostist ja iseloomulikke omadusi (vesi, ammoniaak, kuld, hapnik). 2. Keemilise elemendi-, keemilise ühendi ja molekuli mõisted. Element on kogum ühesuguse tuumalaenguga (prootonite arvuga) aatomeid. Element on aine, mida ei saa keemiliste meetoditega enam lihtsamateks aineteks jagada. (109 elementi, 83 looduses) Keemilised ühendid on keemiliste elementide kogumid, väikseim iseseisev osake on molekul.
Kontsentratsiooni sõltuvust koordinaadist x nimetatakse kontsentratsiooni profiiliks (joon 4- 4b). Selle sõltuvuse kalle mingis punktis dC/dx on kontsentratsiooni gradient. Statsionaarse difusiooni korral on kontsentratsiooni profiil lineaarne ja gradient konstantne: dC/dx= C/ x= Ca-Cb/Xa-Xb=const Statsionaarse difusiooni korral on difusioonivoog võrdeline kontsentratsiooni gradiendiga: J = - D dC / dx Fick'i I seadus kus J difusioonivoog suunas x; D võrdetegur e difusioonitegur. Miinusmärk on seetõttu, et difusioon toimub kontsentratsiooni vähenemise suunas. Kui D = const; S = const ja dC/dx = const, saame integreerimisel: m = - D S dC/ dx t See võrrand annab aja t jooksul läbi pinna S difundeerunud ainehulga. Kui S = 1; dC/dx = -1; t = 1, siis m = D Seega difusioonitegur võrdub ainehulgaga, mis ajaühikus difundeerub läbi ühikulise pinna, kui kontsentratsiooni gradient on 1. D mõõtühik on m2/s. 4. Materjalide tugevus
Energia fluktuatsioonide tõttu võib mõni aatom omandada energia, mis ületab keskmise energia sedavõrd, et aatom saab võres liikuda. Seda energiabarjääri, mida aatom liikumiseks peab ületama (vajalikku lisaenergiat) nimetatakse difusiooni aktiveerimise energiaks. Aatomid, mis omavad seda lisaenergiat, on difusiooni mõttes aktiivsed. Nende kontsentratsioon sõltub temperatuurist Boltzmani võrrandi järgi: kus N aatomite üldine kontsentratsioon; C mingi konstant; E* - aktiveerimise energia. Vastavalt võrranile on n seda suurem, mida väiksem on E* ja mida suurem on T. Seejuures kasvab n temperatuuri tõusul eksponentsiaalselt. E* on vajalik sidemete lõhkumiseks ja võre deformeerimiseks liikumisel. Aatomi liikumiseks kristallvõres peab olema täidetud kaks tingimust: 1) kõrval peab olema tühi koht (vakants või võrevaheline tühik), kuhu minna; 2) aatom peab olema aktiivne. Metallides toimub difusioon kahe mehhanismi järgi. 4.1
Kõik kommentaarid