Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Matemaatiline analüüs I konspekt -Tõkestatud hulgad (0)

5 VÄGA HEA
Punktid

Esitatud küsimused

  • Kui lim f x A kas siis leidub ümbrus U a nii et f x iga x U a korral ?
Vasakule Paremale
Matemaatiline analüüs I konspekt -Tõkestatud hulgad #1 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #2 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #3 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #4 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #5 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #6 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #7 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #8 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #9 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #10 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #11 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #12 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #13 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #14 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #15 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #16 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #17 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #18 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #19 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #20 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #21 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #22 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #23 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #24 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #25 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #26 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #27 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #28 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #29 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #30 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #31 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #32 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #33 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #34 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #35 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #36 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #37 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #38 Matemaatiline analüüs I konspekt -Tõkestatud hulgad #39
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 39 lehte Lehekülgede arv dokumendis
Aeg2012-05-31 Kuupäev, millal dokument üles laeti
Allalaadimisi 73 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor cr1m Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m vaheline kaugus d (P, Q ) valemiga d (P, Q ) = (x - y i ) , siis nimetatakse seda ruumi 2 i i =1 m-mõõtmeliseks eukleidiliseks ruumiks ja tähistatakse R m . Süsteemi P = ( x1 ,..., x m ) nimetatakse ruumi R m punktiks ning reaalarve xi (1 i m ) punkti P koordinaatideks.

Matemaatiline analüüs II
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsioonid. . . . . . . . .

Matemaatiline analüüs
thumbnail
37
docx

Matemaatiline analüüs l.

Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist poollõiku [a, a+), kus > 0. Suuruse lõpmatus ümbruseks nimetatakse suvalist vahemikku (M,), kus M > 0. Suuruse miinus lõpmatus ümbruseks nimetatakse suvalist vahemikku (-,-M), kus M > 0. Tõkestatud hulgad. Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (a, b) nii, et A (a, b). Tõkestatud hulgad on näiteks kõik lõplikud vahemikud (a, b), lõigud [a, b] ja poollõigud [a, b), (a, b]. 2. Jääv ja muutuv suurus. Suuruse muutumispiirkond. Funktsiooni definitsioon. Funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. Funktsiooni esitamine tabelina ja analüütiliselt. Funktsiooni graafiku mõiste. Graafiku omadused. Jäävad ja muutuvad suurused. Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks

Matemaatiline analüüs
thumbnail
6
docx

Matemaatiline analüüs I KT konspekt vähendatud programm

Matemaatiline analüüs I Vähendatud programm I KT Kindlasti peab teadma : 7. Muutuva suuruse piirväärtuse definitsioon - Olgu x järjestatud muutuv suurus. Arvu a nimetatakse muutuva suuruse x piirväärtuseks, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad arvu a ümbrusesse (a - , a + ), st rahuldavad võrratust |x - a| < . Kui arv a on suuruse x piirväärtus, siis öeldakse, et suurus x läheneb arvule a ehk koondub arvuks a ja kirjutatakse x a või lim x = a . Muutuva suuruse ühepoolsete piirprotsesside definitsioonid ­ · Muutuv suurus x läheneb vasakult arvule a, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad poollõiku (a - , a]. Sellisel juhul kirjutatakse x a-. · Muutuv suurus x läheneb paremalt arvule a, kui

Matemaatiline analüüs
thumbnail
82
docx

Matemaatiline analüüs I kordamine eksamiks

1. Reaalarvud Reaalarvude hulga R kirjeldamisel peab oskama välja tuua järgmist: 1) Q ⊂ R – ratsionaalarvude hulk sisaldub reaalarvude hulgas 2) Aritmeetika (tehted reaalarvudega) ja järjestus Aritmeetika. Eeldame, et hulgas R on defineeritud reaalarvude liitmine ja korrutamine järgmiste omadustega: (A1) a + b = b + a kõikide a,b € R korral (liitmise kommutatiivsus) (A2) (a + b)+ c =a +(b + c) kõikide a,b,c € R korral (liitmise assotsiatiivsus) (A3) b + 0 = b iga b € R puhul (nullelemendi olemasolu) (A4) iga b € R puhul leidub -b € R korral omadusega b + (-b) = 0 (vastandelemendi olemasolu) (M1) ab = ba kõikide a,b € R korral (korrutamise kommutatiivsus) (M2) (ab) c = a (bc) kõikide a,b,c € R korral (korrutamise assotsiatiivsus) (M3) 1b = b iga b € R puhul (ühikelemendi olemasolu) (M4) iga b € R \ {0} puhul leidub b-1 € R omadusega bb-1=1 (pöördelemendi olemasolu) (D) (a + b)

Matemaatiline analüüs
thumbnail
13
docx

Matemaatiline analüüs I KT

Matemaatiline analüüs 1. Arvtelg ­ sirge, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Öeldu põhjal saab reaalarvud samastada sirge (arvelje) punktidega. Absoluutväärtuse mõiste ­ reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset arvu. Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunktivahelist kaugust arvteljel. Absoluutväärtuste omadused: Reaalarvude ja lõpmatuste ümbrused ­ Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a ­ ; a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-; a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x-a| < . Reaalarvu vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a-], kus >0. Arv x kuulub arvu a vasakpoolsesse

Matemaatiline analüüs
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

MATEMAATILINE ANALÜÜS I § 1 REAALARVUD JA FUNKTSIOONID 1. Reaalarvu mõiste Tähistame sümboliga N kõigi naturaalarvude hulga, st N = {1, 2, 3,...} ja sümboliga Z kõigi täisarvude hulga, st Z = {...,­3,­2,­1, 0, 1, 2, 3,...}. p Ratsionaalarvudeks nimetatakse arve kujul q , kus p ja q on täisarvud, q 0. Kõigi ratsionaalarvude hulga tähistame sümboliga Q. Ratsionaalarvudeks on parajasti need arvud, mis on esitatavad lõplike või lõpmatute perioodiliste kümnendmurdudena. Arve, mis on esitatavad lõpmatute mitteperioodiliste kümnendmurdudena, nimetatakse irratsionaalarvudeks. Kõik ratsionaalarvud ja irratsionaalarvud moodustavad reaalarvude hulga. Kõigi reaalarvude hulga tähistame sümboliga R. Iga lõplikku kümnendmurdu a= , 12 ...n saab esitada lõpmatu kümnendmurruna kahel viisil: a = , 12 ...n 00... või a = , 12 ...(n -1)99.

Matemaatiline analüüs i
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

st vasakul, st x a. Suuruse lõpmatus ümbruseks nimetatakse suvalist vahemikku (M,), kus M > 0. Arv x kuulub lõpmatuse ümbrusesse (M,) siis ja ainult siis, kui x > M. Suuruse miinus lõpmatus ümbruseks nimetatakse suvalist vahemikku (-,-M), kusM > 0. Arv x kuulub miinus lõpmatuse ümbrusesse (-,-M) siis ja ainult siis, kui x < -M. Tõkestatud hulga definitsioon- Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (a, b) nii, et A (a, b). Tõkestatud hulgad on kõik lõplikud vahemikud (a, b), lõigud [a, b] ja poollõigud [a, b), (a, b]. Tõkestamata hulgad on lõpmatud vahemikud (-, a), (a,) ja lõpmatud poollõigud (-, a], [a,). 2. Jääv ja muutuv suurus- Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Suuruse muutumispiirkond- Muutuva suuruse kõigi võimalike väärtuste hulka

Matemaatiline analüüs I



Lisainfo

Kordamiseks eksamiks

Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun