Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Matemaatiline analüüs l. (11)

5 VÄGA HEA
Punktid

Esitatud küsimused

  • Millal nimetatakse Taylori polunoomi McLaurini polunoomiks?
  • Millistel tingimustel on sirge x a joone y f x vertikaalasumptoot?

Lõik failist

Matematiline
anal
üüs
l.


Jaan Jaano
1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon.
Arvtelje mõiste.
Arvteljeks nimetatakse sirget, millel on valitud nullpunkt ,
pikkusühik ja positiivne suund. Võib väita, et igale arvtelje
punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale
reaalarvule vastab üks ja ainult üks arvtelje punkt.
Absoluutväärtuse mõiste.
Reaalarvu a
absoluutväärtuseks
nimetatakse järgmist
mittenegatiivset reaalarvu:
|a| = a kui
a ≥ 0
a kui
a 0
.
Reaalarvu a
absoluutväärtus |a|
on punkti a
ja nullpunkti
vahelist kaugust arvteljel.
Absoluutväärtuse omadused:
1. |
− a|
= |a|
2. |ab|
= |a|
|b|

3. |a
+ b|
≤ |a|
+ |b|
4. |a
− b| ≥ | |a| − |b| |

Reaalarvude ja lõpmatuste
ümbrused
. Reaalarvu
Vasakule Paremale
Matemaatiline analüüs l #1 Matemaatiline analüüs l #2 Matemaatiline analüüs l #3 Matemaatiline analüüs l #4 Matemaatiline analüüs l #5 Matemaatiline analüüs l #6 Matemaatiline analüüs l #7 Matemaatiline analüüs l #8 Matemaatiline analüüs l #9 Matemaatiline analüüs l #10 Matemaatiline analüüs l #11 Matemaatiline analüüs l #12 Matemaatiline analüüs l #13 Matemaatiline analüüs l #14 Matemaatiline analüüs l #15 Matemaatiline analüüs l #16 Matemaatiline analüüs l #17 Matemaatiline analüüs l #18 Matemaatiline analüüs l #19 Matemaatiline analüüs l #20 Matemaatiline analüüs l #21 Matemaatiline analüüs l #22 Matemaatiline analüüs l #23 Matemaatiline analüüs l #24 Matemaatiline analüüs l #25 Matemaatiline analüüs l #26 Matemaatiline analüüs l #27 Matemaatiline analüüs l #28 Matemaatiline analüüs l #29 Matemaatiline analüüs l #30 Matemaatiline analüüs l #31 Matemaatiline analüüs l #32 Matemaatiline analüüs l #33 Matemaatiline analüüs l #34 Matemaatiline analüüs l #35 Matemaatiline analüüs l #36 Matemaatiline analüüs l #37
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 37 lehte Lehekülgede arv dokumendis
Aeg2010-12-26 Kuupäev, millal dokument üles laeti
Allalaadimisi 484 laadimist Kokku alla laetud
Kommentaarid 11 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor positivel Õppematerjali autor
Matemaatilise analüüsi l küsimused ja vastused (1-45). Õpetaja on Jaan Janno

Sarnased õppematerjalid

thumbnail
10
docx

Matemaatiline analüüs I 1. teooria KT

1. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| =a kui a 0; -a kui a < 0. Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a||b| 3. |a + b| |a| + |b| 4. |a - b| ||a| - |b|| Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - ,a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-,a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Tõkestatud hulgad. Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (a,b) nii, et A (a,b). 2. Jäävad ja muutuvad suurused. Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suu

Matemaatiline analüüs 1
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks avaldame kõigepealt võrdusest suhte ja korrutame saadud avaldise x-ga. Saame valemi Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Võrdleme neid suurusi x suhtes. Esiteks, eelduse f(a) 0 põhjal saame : Teiseks kehtib valem : Näeme, et esimene liid

Matemaatiline analüüs i
thumbnail
8
docx

Matemaatiline analüüs KT2

20. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f (a)0. Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Näeme, et esimene liidetav, so diferentsiaal dy on sama järku lõpmatult kahanev suurus kui x ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus x suhtes. Järelikult väikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seetõttu võime lugeda diferentsiaali dy funktsiooni muudu peaosaks. Jääkliikme võib väikese x korral funktsiooni muudu avaldises ära jätta. Kehtib ligikaudne valem y dy kui x 0 . 21. FUNKTSIOONI LOKAALSETE EKSTREEMUMITE DEFINITSIOON

Matemaatiline analüüs
thumbnail
3
docx

Matemaatiline analüüs 1

23Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 26l'Hospitali reegli põhjal saab 0/0 tüüpi määramatusega piirväärtuse arvutamisel üle minna piirväärtusele, mille all kasutades mõisteid: esineb esialgse murru lugeja tuletise ja nimetaja tuletise jagatis. x = x - a - argumendi muut kohal a Tuletamine. Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et

Matemaatiline analüüs 1
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

piirkonnas A, kui F `(x) = f(x) iga x A korral. Funktsiooni algfunktsiooni leidmist nimetatakse integreerimiseks. 31. Määramata integraal - avaldist F(x) + c , kus F(x) on funktsiooni f(x) mingi algfunktsioon ja c R on suvaline konstant, nimetatakse funktsiooni f(x) määramata integraaliks. 32. Ratsionaalfunktsioon - ratsionaalfunktsiooniks nimetatakse funktsiooni kujul: y = Fn(x) / Gm(x) kus Fn(x) ja Gm(x) on n ja m järku polünoomid. 33. Polünoom - hulkliige. Lõpliku summa näol esinev matemaatiline avaldis 34. Lihtmurdratsionaalfunktsioon - kui murru lugeja aste (polünoomi järk) on väiksem murru nimetaja astmest ( n < m) , siis nim. seda funktsiooni lihtmurdratsionaalfunktsiooniks. 35. Liigmurdratsionaalfunktsioon - kui murru lugeja aste on suurem murru nimetaja astmest ( n > m ) on tegu liigmurdratsionaalfunktsiooniga. 36. Riemanni integraal - piirväärtust lim , 0 = lim f ( i) x i , 0 ( summa n kuni i = 1) nimetatakse funktsiooni f (x) määratud integraaliks e

Matemaatika
thumbnail
8
docx

Matemaatiline analüüs I - I teooria töö

1. · Arvtelje mõiste ­ Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | · Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. o Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. o Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist pooll?

Matemaatika analüüs i
thumbnail
8
docx

Matemaatiline analüüs II teooria töö

1. · Arvtelje mõiste ­ Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | · Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. o Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. o Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist pooll?

Matemaatiline analüüs 2
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a 0 -a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-, a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse (a - , a] siis ja ainult siis, kui selle

Matemaatiline analüüs i




Meedia

Kommentaarid (11)

valloun profiilipilt
valloun: piirväärtusete valemid
17:24 28-09-2016
catzy. profiilipilt
catzy.: natuke liiga segane

19:00 21-10-2012
b0neb0y profiilipilt
Oliver Nuut: 5+ viitsiminse eest!
20:47 31-10-2012



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun