tõkestatud reaalarvude hulgal on olemas alumine raja. 3. Funktsiooni mõiste. Funktsiooni määramispiirkond, muutumispiirkond, graafik. Funktsiooni põhilised esitusviisid. Liitfunktsioon, pöördfunktsioon. Paaris- ja paaritud funktsioonid. Perioodilised funktsioonid. Põhilised elementaarfunktsioonid. Elementaarfunktsioonid. Funktsioon - Kui igale arvule x X on mingi eeskirja f abil seatud vastavusse üks reaalarv y , siis öeldakse, et hulgas X on määratud funktsioon y=f(x) ja kirjutatakse y=f(x), x X Määramis ja muutumispiirkond - Hulka X nimetatakse funktsiooni määramispiirkonnaks ja hulka Y = { y | y = f ( x ) , x X } tema väärtuste hulgaks ehk muutumispiirkonnaks Funktsiooni graafik - funktsiooni graafikuks nimetatakse punktide (x,y) hulka {(x,y)|y=(x), x X } Funktsiooni põhilised esitlusviisid: 1. Esitus ilmutatud kujul
olemas alumine raja. 4) Geomeetriline mudel – arvsirge (üksühene vastavus reaalarvude ja arvsirge punktide vahel) – Arvsirge on reaalarvude hea geomeetriline mudel. Positiivsele arvule a seame arvsirge positiivsel poolel vastavusse punkti, mille kaugus nullpunktist on a, negatiivse a puhul fikseerime arvtelje negatiivsel poolel punkti kaugusel −a. Pidevuse aksioom (P) garanteerib selle, et igale arvsirge punktile vastab mingi üheselt määratud reaalarv. 5) Igast mittenegatiivsest arvust saab võtta n-da juure – Igast mittenegatiivse reaalarvu b ja iga naturaalarvu n korral leidub üheselt määratud mittenegatiivne reaalarv x omadusega xn=b 6) Alamhulk N ei ole ülalt tõkestatud (Archimedese printsiip) – Alamhulk N ⊂ R ei ole ülalt tõkestatud, s. t. iga reaalarvu a korral leidub temast suurem naturaalarv n. Teisisõnu, Iga a € R leidub n € N : n > a
Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a I FUNKTSIOONID Tõkestatud hulgad Ülalt ja alt tõkestatud hulgad Olgu X mingi reaalarvude hulk. Definitsioon: Kui leidub niisugune reaalarv M , et hulga X iga elemendi x puhul kehtib võrratus x M , siis öeldakse, et hulk X on ülalt tõkestatud, kusjuures arvu M nimetatakse hulga X ülemiseks tõkkeks. Ülalt tõkestatud hulga X elemendid paiknevad seega lõpmatus poollõigus (- , M ] . Definitsioon: Kui leidub niisugune reaalarv m , et hulga X iga elemendi x puhul kehtib võrratus x m , siis öeldakse, et hulk X on alt tõkestatud, kusjuures arvu m nimetatakse hulga X alumiseks tõkkeks.
Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused
Seega R = Q I. Arvtelje m~ oiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkus¨ uhik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. T~oepoolest, nullpunktist u ¨he u¨hiku v~orra positiivses suunas paikneb punkt, mis vastab arvule 1, poole u ¨hiku v~orra negatiivses suunas paikneb punkt, mis vastab arvule -1/2 jne. V~oib v¨aita, et igale arvtelje punktile vastab u ¨ks ja ainult u¨ks reaalarv ja vastupidi: igale reaalarvule vastab u ¨ks ja ainult u ¨ ¨ks arvtelje punkt. Oeldu p~ohjal saab reaalarvud samastada sirge (arvelje) punktidega. Olgu tasandil antud kaks arvtelge, mis on ristuvad oma nullpunktides. Need moodustavad tasandil nn koordinaatteljestiku. Tasandi punkti ristkoordinaatideks nimetatakse selle punkti ristprojektsioone koordinaatttelgedele. Igale tasandi
Seega R = Q I. Arvtelje m~ oiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkus¨ uhik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. T~oepoolest, nullpunktist u ¨he u¨hiku v~ orra positiivses suunas paikneb punkt, mis vastab arvule 1, poole u ¨hiku v~orra negatiivses suunas paikneb punkt, mis vastab arvule -1/2 jne. V~oib v¨aita, et igale arvtelje punktile vastab u ¨ks ja ainult u¨ks reaalarv ja vastupidi: igale reaalarvule vastab u ¨ks ja ainult u ¨ ¨ks arvtelje punkt. Oeldu p~ohjal saab reaalarvud samastada sirge (arvelje) punktidega. Olgu tasandil antud kaks arvtelge, mis on ristuvad oma nullpunktides. Need moodustavad tasandil nn koordinaatteljestiku. Tasandi punkti ristkoordinaatideks nimetatakse selle punkti ristprojektsioone koordinaatttelgedele. Igale tasandi
Funktsioon. Määramispiirkond, väärtuste hulk. Pöördfunktsioon. Seaduspärasust või teisendust, mis igale X elemendile x seab vastavuse ühe hulga Y elemendi y nim. argumendi x funktsiooniks ja kirjutatakse y=f(x) Funktsiooni y=f(x) määramispiirkonnaks on kõigi nende argumendi x väärtuste hulk, mille korral funktsioon omab mõtet ja on lõpliku väärtusega. Funktsiooni väärtuste hulgaks nim. nende väärtuste hulka, mida funktsioon omandab, kui läbib kogu määramispiirkonna. Tingimused, mis peavad olema täidetud elementaarfunktsioonide kaudu esitatud reaalmuutuja funktsioonil: B ( x) 1) A( x) 0 A( x) 2) 2 x A( x) A( x) 0 3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x l
3) D = [a, b ) = {x : a x < b} D = {a, b} hulk D ei ole lahtine ega kinnine 1 Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) 2. Mitme muutuja (m-muutuja) funktsiooni mõiste Def. Kui hulga D R m igale punktile P = ( x1 ,..., x m ) on vastavusse seatud kindel reaalarv z , siis öeldakse, et hulgal D on määratud m-muutuja funktsioon f . Kirjutame: z = f (P ) või z = f ( x1 ,..., x m ) Hulka D nimetatakse funktsiooni f määramispiirkonnaks. Funktsiooni z = f (P ) loomulikuks määramispiirkonnaks nimetatakse punktide P hulka, mille korral funktsiooni määrav eeskiri omab mõtet. Def. M-muutuja funktsiooni f graafikuks nimetatakse hulka { ( f ) = ( x1 ,..., x m , z ) R m +1 : ( x1 ,..., x m ) R m , z = f ( x1 ,..., x m ) . }
Kõik kommentaarid