UUS kiire ja vahendustasuta krüptoraha NANO Teeni tasuta NANO Sulge
Facebook Like
Add link

Kategooria matemaatiline analüüs i - 8 õppematerjali

Matemaatika >> Matemaatiline analüüs i
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

a I FUNKTSIOONID Tõkestatud hulgad Ülalt ja alt tõkestatud hulgad Olgu X mingi reaalarvude hulk. Definitsioon: Kui leidub niisugune reaalarv M , et hulga X iga elemendi x puhul kehtib võrratus x M , siis öeldakse, et hulk X on üla...

Matemaatiline analüüs I - Tartu Ülikool
58 allalaadimist
18
docx

Matemaatiline analüüs KT2 vastused

Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut...

Matemaatiline analüüs I - Tartu Ülikool
103 allalaadimist
23
doc

Matemaatiline analüüs KT1 vastused

Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a 0 -a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugus...

Matemaatiline analüüs I - Tartu Ülikool
81 allalaadimist
6
docx

Mat. Analüüs I ; teooria II osa

Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Loetleda diferentsiaali omadused. 2. Olgu antud funktsioon, mis diferentseerub punktis a ja eeldame, et Teades, et Nii me näitasime, et Tähistades ja vahe järgmiselt Kehtib võrratus:...

Matemaatiline analüüs I - Tartu Ülikool
14 allalaadimist
6
docx

Matemaatilise analüüsi teooriakontrolltöö kordamisküsimused vastustega

Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Tõkestatud hulgad. Definitsioon Reaalarvudest koosnevat hulka nimetatakse tõkestatuks, kui leidub selline positiivne arv nii, et iga korral kehtib võrratus . Hulk on tõkestatud, kui kõik selle hulga elemendid kuuluvad nulli ümbrusesse Näide: Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõ...

Matemaatiline analüüs I - Tartu Ülikool
17 allalaadimist
5
docx

Kordamisküsimused aines "Matemaatiline analüüs I"

Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Funktsiooni y argumendiks e sõltumatuks muutujaks nimetatakse muutujat x Sõltuvaks muutujaks nimetatakse funktsiooni y. Funktsiooni määramispiirkond. Funktsiooni y määramispiirkonnaks nimetatakse arg...

Matemaatiline analüüs I - Tartu Ülikool
22 allalaadimist
4
docx

Teooriatöö

Sõnastada ja tõestada piirvväärtusteoreem kahe funktsiooni summa piirväärtuse arvutamiseks piirprotsessis x + . lim f ( x ) = A lim g ( x) = B Kui x + ja x + , siis lim f ( x) + g ( x) = lim f ( x) + lim g ( x) x + x + x + Üritan eelpool mainitut tõestada. lim f ( x) =...

Matemaatiline analüüs I - Tartu Ülikool
11 allalaadimist
4
pdf

Kordamisülesanded matemaatikas

u ¨ lesannete kontrollt¨ oo¨ks ettevalmistumiseks 1. Avaldada funktsiooni f (x) = e-x neljanda astme Taylori pol¨ unoom punktis 0. 2. Avaldada funktsiooni 1...

Matemaatiline analüüs I - Tartu Ülikool
27 allalaadimist


Registreeri ja saadame uutele kasutajatele
faili e-mailile TASUTA

Konto olemas? Logi sisse

Faili allalaadimiseks, pead sisse logima
või
Kasutajanimi / Email
Parool

Unustasid parooli? | Tee tasuta konto

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun