Pinnakiht õhuke kiht, mis eraldab kahte mahulist faasi. Pinnakihi molekulidel on kompenseerimata molekulaarjõudude väli, mis viib adsorbendi- ja adsorbaadi osakeste vahelise sideme tekkimisele. Kui tekivad van der Waalsi jõud, siis on sideme energia väike ja sellist adsorptsiooni liiki nimetatakse füüsikaliseks adsorptsiooniks. Kui adsorbaadi ja adsorbendi pinna vahel tekib keemiline side, nimetatakse seda kemosorptsiooniks. Normaaltingimustel on füüsikaline adsorptsioon pöörduv, kemosorptsioon aga mittepöörduv protsess. Pindliig või - moolide arv pinnakihis - moolide arv faasi sisemuses 11. Adsorptsioon. Pindpinevuse vähendamine (d < 0) pindpinevust vähendavate madala pindpinevusega aine kogunemisega faaside piirpinnale. Seda nimetatakse adsorptsiooniks. Definitsioon: adsorptsioon on süsteemi üksikute komponentide kontsentreerumine faaside eralduspinnale. Pindkihti läheb see komponent, milline vähendab kõige
20. Elektrolüütide adsorptsioon. Siin põhjustavad adsorptsiooni elektrostaatilised jõud. Vaatleme siin vaid vesilahuseid. Ioonid adsorbeeruvad polaarsetel kristalli pindadel. Kui kristalli pinnal on laeng, siis adsorbeerib see vastasmärgilised ioonid. Ioonide raadius mõjub tugevasti nende adsorptsioonivõimele. Mida suurem on iooni raadius, seda paremini ioon adsorbeerub, selletõttu et mida suurem on iooni raadius, seda väikesem on iooni hüdratatsioon. Adsorbeerunud ioonide hüdratatsioon aga vähendab iooni ja pinna elektrilist vastumõju. Järgnevalt jooniselt on näha, et adsorptsiooni võimelt on parimad Cs+, Ba2+, ja I- ioonid. Mida suurem on iooni valents, seda tugevamini ta seob end vastasmärgilise pinnaga. Seepärast Al3+ adsorbeerub paremini kui K+. Adsorptsiooni kristalli pinnale võib vaadelda kui kristalliseerumise jätku. Kristalli saab edasi ehitada aga nende ioonidega, millest kristall juba koosneb. Järgneval joonisel näidatud AgI kristall on asetatud KI lahu
Dispergeeritud süsteeme klassifitseeritakse nii osakeste mõõtmete (jäme-, kolloid-, molekulaardispergeeritud) kui koostisosade agregaatoleku alusel (gaas, vedel, tahke);Lüofoobsed: vastastikmõjud nõrgad, dispersioonikeskkonnaks vesi: hüdrofoobsed süsteemid, lüofiilsed: osakeste vastastikmõjud suured, vesikeskkonna puhul hüdrofiilsed;vabadispersed: puuduvad disperse faasi omavahelised seosed (nim soolid), struktureeritud süsteemid: disperse faasi osakesed moodustavad omavahel suht tugevaid struktuure, omadused lähenevad tahkele ainele ja nim tarreteks ehk geelideks.; gaasiliste korral aerosoolideks, vedela korral lüsoolideks, tahke korral soolideks, hüdrosoolide korral on keskkonnaks vesi; organosoolide korral orgaaniline vedelik. Kolloidsüs. Valmistamise meetodid: kondenseerimism: eesmärgiks aatomite/molekulide/ioonide liitmine suuremateks agregaatideks. Toimib isevooluliselt, sest kondenseerumisel toimub pinna vähenemine ja sellega koos vabaenergia vähenemine p
Dispergeeritud süsteeme klassifitseeritakse nii osakeste mõõtmete on iooni raadius, seda väikesem on iooni hüdratatsioon. olema lüofiilne 2) sisaldama stabilisaatorit, (milleks võivad olla lahustumatud mille tõttu seep ei pese.35. Seepide olek lahuses. (jäme-, kolloid-, molekulaardispergeeritud) kui koostisosade Adsorbeerunud ioonide hüdratatsioon aga vähendab iooni ja pinna pindaktiivse aine molekulid või elektrolüüdi ioonid). Solubilisatsioon. Lahjades lahustes esinevad seebid molekulidena. agregaatoleku alusel (gaas, vedel, tahke); Lüofoobsed: elektrilist vastumõju. Adsorptsiooni võimelt on parimad Cs+, Ba2+, Emulsioonideks nimetatakse selliseid dispergeeritud süsteeme, Kontsentratsiooni tõustes tekivad mitsellid alates teatud vastastikmõjud nõrgad, dispersioonikeskkonnaks vesi: hüdrofoobsed ja I-ioonid. Mida suurem on
Peenestusmeetodil kasutatakse erinevaid meetodeid peenestamiseks. · Mehaaniline meetod kasutab mehaanilist tööd dispergeerimiseks n. kuulveski (tahke), kolloidveski ning ultraheli (vedel ja tahke) · Elektrikaare meetod ülitugev elektrivool elektroodide vahel aurustab aine, mis seejärel kondenseerub väikeste osakestena · Peptisatsioon nähtus, kus sademele lisatakse pärast sadestumist elektrolüüti ning segatakse ja moodustub kolloid. Selle tekkimise aluseks on osakese pinnal elektrilise kaksikkihi tekkimine, mis stabiliseerib väikest osakest (sadestunud kujul ei ole) Selleks, et pärast peenestamist osakesed kokku ei läheks, kasutatakse surfaktante. Surfaktandid on ained, mis vähendavad vedeliku pindpinevust teise faasi suhtes. Nii vähendavad nad ka pinnaenergiat, sest pinnaenergia sõltub pindpinevusest. Seeläbi võib disp. faasi eripind kasvada e. võib moodustuda stabiilne kolloid.
gaaside segu korral komponendi osarõhuga). Henry seadust väljendab avaldis , kus · on gaasi rõhk (osarõhk) vedeliku kohal, · on Henry konstant, · on gaasi kontsentratsioon lahuses. Henry seadus kehtib ainult madalate ja mõõdukate rõhkude puhul. Henry konstant: kus: · is the number density at free phase, · is the surface number density, 3. Milline on Langmuiri adsorptsioonivõrrand? Milline on selle konstandi füüsikaline sisu? Langmuir esitas 1917.a. monomolekulaarse adsorptsiooni teooria. Ta lähtus järgmistest eeldustest: 1. Adsorptsioon on vaadeldav keemilise reaktsiooni analoogina. Adsorptsiooni põhjustavad jõud on lähedased keemilisele sidemele. Adsorptsioon lõpeb monomolekulaarse kihi moodustamisega. Viimast iseloomustab piiriline adsorptsioon m. 2. Tahke aine pinnal on alati mehaanilised ja kristallograafilised ebaühtlused. Nendel adsorbendi pinna aktiivsetel tsentritel toimubki adsorptsioon
1. Kineetika uurimise vajalikkus, seos termodünaamikaga. Kiirus võib olla otsustava tähendusega produktide tekkel! Vaatamata, et reaktsiooni vaba energia muut on negatiivne võib produkte mitte tekkida piisaval hulgal ja kiirest. Kiirus on aeglane Keemiline kineetika on füüsikalise keemia osa, mis kirjeldab reaktsioonide ajalist kulgu matemaatiliste võrrandite abil. Termodünaamika annab vastuse reaktsioonide kulgemise võimalikkuse kohta, kuid kineetiline analüüs näitab, kui kiiresti saabub tasakaal. Termodünaamiline tasakaalukonstant annab võimaluse arvutada reaktsiooni võrrandile vastavat max. saagist, kuid ei räägi midagi reaktsiooni kiirusest. Keemiliste reaktsioonide ja protsesside planeerimisel on tähtis:
Katalüsaatori mõju *Katalüsaator kiirendab ühtviisi nii päri-kui vastassuunalist reaktsiooni. *Seega ei mõjuta katalüsaator keemilise tasakaalu asendit, vaid muudab ainult tasakaalu saabumiseks kuluvat aega. Tasakaalulised protsessid Aurustumine küllastunud auru rõhk lahuse kohal on tasakaalu tingimustes konstantne suurus Lahustumine: - lahustunud aine jaotumine kahe omavahel mitteseguneva lahusti vahel vastavalt jaotuskoefitsiendi väärtusele Keemiline kineetika *Füüsikalise keemia osa, mis tegeleb reaktsioonide kiirustega. *Termodünaamika *Termodünaamikas vaatlesime vaid süsteemi alg- ja lõppolekut, vahepealne osa ei olnud oluline. *Termodünaamika iseloomustab reaktsioone soojusefekti, teostavuse ja tasakaaluoleku. Kas reaktsioon toimub või mitte? *Kineetikas koondub põhitähelepanu just sellele vahepealsele osale. *Kineetika määrab, millise kiirusega reaktsioonid toimuvad. Kui kiiresti toimub reaktsioon?
Kõik kommentaarid