1. · Arvtelje mõiste Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | · Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. o Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0.
1. · Arvtelje mõiste Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | · Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. o Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0.
Matemaatiline analüüs I I KT 1. Arvteljeks nimetatakse sirget, millel on maaratud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid parameetreid saab punktidele teljel märkida kõik reaalarvud. Igale reaalarvule vastab arvteljel ainult üks koht ja vastupidi. Absoluutväärtus on punkti kaugus koordinaatide alguspunktist. |a| =a kui a 0 -a kui a < 0 . Absoluutväärtuste omadused 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused Reaalarvu a ümbruseks nimetatakse suvalist lõiku (a-;a+), kus >0 on ümbruse raadius. Arv x kuulub a ümbrusesse siis ja ainult siis, kui punkti x kaugus a- st on väiksem ümbruse raadiusest | x-a| < Suuruse lõpmatus ümbrust nimetatakse suvalist vahemikku (M; ), kus M>0. Arv x kuulub lõpmatuse ümbrusesse kui x>M
Matemaatiline analüüs I kontrolltöö Punktid 1-22 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. a. Arvtelje mõiste Arvteljeks nim sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Igale arvtelje punktile vastab ainult üks reaalarv ja vastupidi. b. Reaalarvu absoluutväärtus Reaalarvu absoluutväärtuseks nimetatakse järgmist mittenegatiivset arvu |a|= a, kui a 0, -a, kui a<0 c. Loetleda absoluutväärtuse omadused |-a|=|a|; |ab|=|a|*|b|; |a+b||a|+|b|;|a-b||a|-|b| d. Reaalarvude ja lõpmatuste ümbrused d.i. Reaalarvu a ümbruseks nim suvalist vahemikku (a-,a+), kus on
Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0.
Matemaatiline analüüs 1. Arvtelg sirge, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Öeldu põhjal saab reaalarvud samastada sirge (arvelje) punktidega. Absoluutväärtuse mõiste reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset arvu. Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunktivahelist kaugust arvteljel. Absoluutväärtuste omadused: Reaalarvude ja lõpmatuste ümbrused Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a ; a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-; a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x-a| < .
Esimese kontrolltöö materjal hõlmab lõike 1 22 ja teise kontrolltöö materjal hõlmab lõike 23 - 45. Igas kontrolltöös on 5 küsimust. Üks küsimus viiest on valitud jämedas kirjas (bold face) olevate teemade hulgast. Vähemalt kaks küsimust viiest sisaldavad tõestusi, tuletuskäike või põhjendusi. Programm järgib otseselt õppejõu konspekti. Kontrolltöödes ei küsita konspektis esitatud näiteid ja väikeses kirjas olevaid osi. 1. Def. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Def. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: Absoluutväärtuste omadused: · |-a|=|a| · |ab|=|a||b| · |a+b||a|+|b| · |a-b|| |a|-|b| | Reaalarvude ja lõpmatuste ümbrused: Def
Esimese kontrolltöö materjal hõlmab lõike 1 22 ja teise kontrolltöö materjal hõlmab lõike 23 - 45. Igas kontrolltöös on 5 küsimust. Üks küsimus viiest on valitud jämedas kirjas (bold face) olevate teemade hulgast. Vähemalt kaks küsimust viiest sisaldavad tõestusi, tuletuskäike või põhjendusi. Programm järgib otseselt õppejõu konspekti. Kontrolltöödes ei küsita konspektis esitatud näiteid ja väikeses kirjas olevaid osi. 1. Def. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Def. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: Absoluutväärtuste omadused: · |-a|=|a| · |ab|=|a||b| · |a+b||a|+|b| · |a-b|| |a|-|b| | Reaalarvude ja lõpmatuste ümbrused: Def
Kõik kommentaarid