MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a ≥ 0 −a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | − a| = |a| 2. |ab| = |a| |b| 3. |a + b| ≤ |a| + |b| 4. |a − b| ≥ | |a| − |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a − ε, a + ε), kus ε > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a−ε, a+ε) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui ε, st |x − a| < ε. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a − ε, a], kus ε > 0. Arv x kuulub arvu a vasakpoolsesse ümbrus
Kordamisküsimusi 1. teema kohta 1. Mis on arvtelg? (lk 2) Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. 2. Defineerida reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Omadused: 1. | − a| = |a| 2. |ab| = |a| |b| 3. |a + b| ≤ |a| + |b| 4. |a − b| ≥ | |a| − |b| | 3. Millist hulka nimetatakse tõkestatuks? (lk 3) Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (c, d) nii, et A ⊂ (c, d). Tõkestatud hulgad on näiteks kõik lõplikud vahemikud (a, b), lõigud [a, b] ja poollõigud [a, b), (a, b] 4. Milline suurus on jääv ja milline suurus on muutuv? Mida nimetatakse muutuva suuruse muutumispiirkonnaks? (lk 3) Suurus
Arvtelg sirge, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Reaalarvu absoluutväärtus - nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Absoluutväärtuste omadused: |-a|=|a| |ab|=|a||b| |a+b||a|+|b| |a-b|| |a|-|b| | Reaalarvude ja lõpmatuste ümbrused - Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist poollõiku [a, a+), kus > 0. Suuruse lõpmatus ümbruseks nimetatakse suvalist vahemikku (M,), kus M > 0. Suuruse miinus lõpmatus ümbruseks nimetatakse suvalist vahemikku (-,-M), kus M > 0. Tõkestatud hulgad - Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (a, b) nii, et A (a, b). Jääv suurus suurus, mille arvuline väärtus ei muutu. Muutuv suurus suurus, mis võib omandada erin
1. · Arvtelje mõiste Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | · Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. o Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. o Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist pooll?
1. · Arvtelje mõiste Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | · Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. o Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. o Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist pooll?
MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a 0 -a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-, a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse (a - , a] siis ja ainult siis, kui selle
Parameetrilisel kujul antud funktsioon Funktsiooni piirväärtuse definitsiooni laienemine juhtudele a = ± ja b = 1.Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda 4.Üksühese funktsiooni ja pöördfunktsiooni definitsioonid. Vaatleme funktsiooni y=f(x). Toome lisaks muutujale x ± absoluutväärtuse Seosed funktsiooni ja tema pöördfunktsiooni ja y sisse ka kolmanda muutuja t. x= (t). Siis saab ka Funktsioonil f on piirväärtus kohal a, kui suvalises piirprotsessis xa, mis omadused. Reaalarvude ja lõpmatuste ümbrused. määramispiirkondade ja väärtuste hulkade vahel, vastastikune muutuja y avaldada parameetri t kaudu. y = (t). rahuldab tingimust xa
Täisprogramm Selle programmi järgi saab ette valmistada teooria kontrolltööde B (so raskemateks) variantideks. Esimese kontrolltöö materjal hõlmab lõike 1 22 ja teise kontrolltöö materjal hõlmab lõike 23 - 45. Igas kontrolltöös on 5 küsimust. Üks küsimus viiest on valitud jämedas kirjas (bold face) olevate teemade hulgast. Vähemalt kaks küsimust viiest sisaldavad tõestusi, tuletuskäike või põhjendusi. Programm järgib otseselt õppejõu konspekti. Kontrolltöödes ei küsita konspektis esitatud näiteid ja väikeses kirjas olevaid osi. 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. V: Arvtelje mõiste: arvteljeks nim. sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Reaalarvu absoluutväärtus: reaalarvu a absoluutväärtuseks nim. järgmist
Kõik kommentaarid