Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega (0)

1 Hindamata
Punktid

Esitatud küsimused

  • Mille puutuja tõusunurk ei ole Joonis 35 lk 68?
Vasakule Paremale
MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #1 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #2 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #3 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #4 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #5 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #6 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #7 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #8 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #9 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #10 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #11 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #12 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #13 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #14 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #15 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #16 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #17 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #18 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #19 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #20 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #21 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #22 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #23 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #24 MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega #25
Punktid 5 punkti Autor soovib selle materjali allalaadimise eest saada 5 punkti.
Leheküljed ~ 25 lehte Lehekülgede arv dokumendis
Aeg2014-12-17 Kuupäev, millal dokument üles laeti
Allalaadimisi 45 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor A_G Õppematerjali autor

Sarnased õppematerjalid

thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a 0 -a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-, a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse (a - , a] siis ja ainult siis, kui selle

Matemaatiline analüüs i
thumbnail
22
docx

Matemaatiline analüüs (vähendatud programm)

Matemaatiline analüüs (vähendatud programm) KT nr. 1 Igas kontrolltöös on 4 küsimust, millest üks on valitud jämedas kirjas (bold face) olevate teemade hulgast (see on kõige olulisem materjal), 2 küsimust on valitud ülejäänud teemadest ja viimase 4-nda küsimuse all on võimalik kirjutada omal valikul 1/4-1/2 lk teksti antud programmi ulatuses. 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon.  Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Öeldu põhjal saab reaalarvud samast

Matemaatiline analüüs i
thumbnail
11
docx

Kordamisküsimusi 1. teema kohta - Teooriatöö I

Kordamisküsimusi 1. teema kohta 1. Mis on arvtelg? (lk 2) Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. 2. Defineerida reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Omadused: 1. | − a| = |a| 2. |ab| = |a| |b| 3. |a + b| ≤ |a| + |b| 4. |a − b| ≥ | |a| − |b| | 3. Millist hulka nimetatakse tõkestatuks? (lk 3) Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (c, d) nii, et A ⊂ (c, d). Tõkestatud hulgad on näiteks kõik lõplikud vahemikud (a, b), lõigud [a, b] ja poollõigud [a, b), (a, b] 4. Milline suurus on jääv ja milline suurus on muutuv? Mida nimetatakse muutuva suuruse muutumispiirkonnaks? (lk 3) Suurus

Matemaatika analüüs i
thumbnail
16
doc

Matemaatiline analüüs

Täisprogramm Selle programmi järgi saab ette valmistada teooria kontrolltööde B (so raskemateks) variantideks. Esimese kontrolltöö materjal hõlmab lõike 1 ­ 22 ja teise kontrolltöö materjal hõlmab lõike 23 - 45. Igas kontrolltöös on 5 küsimust. Üks küsimus viiest on valitud jämedas kirjas (bold face) olevate teemade hulgast. Vähemalt kaks küsimust viiest sisaldavad tõestusi, tuletuskäike või põhjendusi. Programm järgib otseselt õppejõu konspekti. Kontrolltöödes ei küsita konspektis esitatud näiteid ja väikeses kirjas olevaid osi. 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude

Matemaatiline analüüs
thumbnail
8
docx

Matemaatiline analüüs I - I teooria töö

1. · Arvtelje mõiste ­ Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | · Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. o Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. o Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist pooll?

Matemaatika analüüs i
thumbnail
8
docx

Matemaatiline analüüs II teooria töö

1. · Arvtelje mõiste ­ Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | · Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. o Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. o Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist pooll?

Matemaatiline analüüs 2
thumbnail
37
docx

Matemaatiline analüüs l.

Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suva

Matemaatiline analüüs
thumbnail
13
docx

Matemaatiline analüüs I KT

Matemaatiline analüüs 1. Arvtelg ­ sirge, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Öeldu põhjal saab reaalarvud samastada sirge (arvelje) punktidega. Absoluutväärtuse mõiste ­ reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset arvu. Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunktivahelist kaugust arvteljel. Absoluutväärtuste omadused: Reaalarvude ja lõpmatuste ümbrused ­ Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a ­ ; a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-; a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x-a| < . Reaalarvu vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a-], kus >0. Arv x kuulub arvu a vasakpoolsesse

Matemaatiline analüüs




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun