Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

"piirv" - 26 õppematerjali

piirv - st, kus x→x0 ja seejuures x>x0. Seda tähistame lim x→x0+0 f(x)=b. Piirv-ks vasakult, kui x→x0, nim. piir-st, kus x→x0 ja seejuures x
thumbnail
3
pdf

Piirväärtus näidisülesanded

Funktsiooni piirv¨ a¨ artuse arvutamise n¨ aidis¨ ulesaded N¨ aide 1. Leida piirv¨aa¨rtus x2 + x + 1 lim . x-1 x2 - x + 1 Lahendus. Vaadeldav funktsioon on elementaarfunktsioon ja punkt x = -1 kuulub tema m¨aa¨ramis- piirkonda. Seega x2 + x + 1 1-1+1 1 lim 2 = = . x-1 x - x + 1 1+1+1 3 N¨ aide 2. Leida piirv¨aa¨rtus 1 - 3 x2 + 1 ...

Matemaatika → Kõrgem matemaatika
23 allalaadimist
thumbnail
10
docx

ARVU ABSOLUUTVÄÄRTUSE OMADUSED

x1 , x2∈ A FUNKTSIOON (Ühene) ühe reaalmuutuja f-n – hulga X ⊂ R igale elemendile vastab element y hulgast Y ⊂ R. Mitmene f-n – hulga X igale elemendilt vastab vähemalt üks element hulgas Y ja vähemalt ühele hulga X elemendile Mittekahanev(monotoonselt kasvav): piirkonnas A⊂X , kui iga korral vastab mitu elementi hulgast Y. Määramispiirkond – hulk X. Muutumispiirkond – hulk Y. f ( X )={ y| y=f ( x ) ˄ x ∈ X } ⊆Y ...

Matemaatika → Matemaatika
5 allalaadimist
thumbnail
64
pdf

Kolokvium 1 materjal

TTU¨ Matemaatikainstituut http://www.staff.ttu.ee/math/ Ivar Tammeraid http://www.staff.ttu.ee/itammeraid/ ¨ US MATEMAATILINE ANALU ¨ I Elektrooniline ~oppevahend Tallinn, 2001 Tr¨ ukitud versioon: Ivar Tammeraid, Matemaatiline anal¨ uu ¨ Kirjastus, ¨s I, TTU Tallinn 2001, 227 lk, ISBN 9985-59-289-1 ¨ Raamatukogu Viitenumber http://www.lib.ttu.ee TTU ~opikute osakonnas 517/T-15 c Ivar Tammeraid, 2001 Sisukord 0.1. Eess~ ona K¨aesoleva ~ oppevahendi aluseks on autori poolt viimastel aastatel Tallinna Tehnika¨ ulikoo- lis bakalaureuse~ oppe u ¨li~ opilastele peetud u ¨he muutuja funktsiooni diferentsiaal- ja inte- graalarvutuse loengud nimetuse "Matemaatiline anal¨ uu¨s I" all. Siiski ei ole tegu pelgalt u ¨hel semestri...

Matemaatika → Matemaatiline analüüs
65 allalaadimist
thumbnail
3
docx

Funktsioonide mõisted

Funktsiooni m˜oiste Definitsioon 1 Kui on antud eeskiri, mis hulga X R igale elemendile seab vastavusse elemendi hulgast Y R, siis ¨oeldakse, et on antud funktsioon hulgal X. Funktsioone t¨ahistatakse matemaatikas f ,g,h,...,',jne. f (x) = avaldis x-ist f (x) = x + 1. Funktsiooni esitusviisid I Tabelina. x 1 3 10 f (x) 2 4 11 f (1) = 2, f (3) = 4 ja f (10) = 11. I Anal¨u¨utiliselt f (x) = valem muutujast x. f (x) = x + 1. Definitsioon 2 Anal¨u¨utilisel kujul esitatud funktsiooni m¨a¨aramispiirkonnaks nimetatakse argumendi k˜oigi v¨a¨artuste hulka, mille korral see valem on m¨a¨aratud. M¨a¨aramispiirkonda t¨ahistatakse X. I Graafiliselt. Funktsiooni graafikuks nimetatakse punktihulka G = {(x,f (x))|x 2X}. Definitsioon 3 Funktsiooni f nimetatakse paarisfunktsiooniks, kui iga x kuulubX korral kehtib v˜ordus f (−x) = f (x). Funktsiooni f nimetatakse paarituks funktsiooniks, kui iga x kuulubX korral kehtib v˜ordus f (−x) = −f (...

Matemaatika → Matemaatika
18 allalaadimist
thumbnail
18
pdf

Määratud integraal

5 M¨ a¨ aratud integraal 5.1 M¨ a¨ aratud integraali mo ~iste Olgu funktsioon y = f (x) m¨a¨aratud l~oigul [a; b]. Jaotame l~oigu [a; b] suvalisel viisil punktidega x1 , x2 , ... xn-1 n osal~oiguks, kusjuures a = x0 < x1 < x2 < . . . < xk-1 < xk < . . . < xn = b. Tekkinud osal~oigud on [xk-1 ; xk ], kus k = 1, 2, . . . , n. T¨ahistagu xk = xk - xk-1 k-nda osal~oigu pikkust. Edasi valime igalt osal~oigult t¨aiesti suvalise punkti k [xk-1 ; xk ], k = 1, 2, . . . , n, ja moodustame korrutised f (k )xk . Liites need korrutised, saame summa n sn = f (k )xk , k=1 mida nimetatakse funktsiooni f (x) integraalsummaks l~oigul [a; b]. Jaotuspunktid x1 , x2 , . . . on...

Matemaatika → Matemaatiline analüüs 2
176 allalaadimist
thumbnail
4
pdf

Kordamisülesanded matemaatikas

¨ Ulesandeid 2. u ¨ lesannete kontrollt¨ oo¨ks ettevalmistumiseks 1. Avaldada funktsiooni f (x) = e-x neljanda astme Taylori pol¨ unoom punktis 0. 2. Avaldada funktsiooni 1 f (x) = x+1 kolmanda astme Taylori pol¨ unoom punktis 0. 3. Arvutada piirv¨aa¨rtus l'Hospitali reeglit kasutades: x3 - 5x2 + 3x + 9 lim . x3 x3 - 8x2 + 21x - 18 4. Arvutada piirv¨aa¨rtus l'Hospitali reeglit kasutades: (1 - x)2 lim . x1 1 - sin x...

Matemaatika → Matemaatiline analüüs i
34 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

Kui funktsioon f rahuldab nimetatud tingimust vaid oma määramispiirkonna mingil osahulgal, siis saab rääkida üksnes selle funktsiooni vastava lahendi pöördfunktsioonist. Kui funktsiooni f tuletis f' on kohal x nullist erinev, siis pöördfunktsiooni f-1 tuletis kohal y=f(x) saab avaldada kujul ( f -1 )' ( y ) = f '1( x ) = f ' ( f 1-1 ( y ) ) 4. Funkts. Piirväärtus. Ühepoolsed piirväärtused. Funktsiooni piirv. Def: Funktsioonil f on piirväärtus b kohal a kui suvalises piirprotsessis xa, mis rahuldab tingimust x a, funktsiooni väärtus f(x) läheneb arvule b. Funktsiooni piirväärtuse kirjutusviis on: lim(xa) f(x) = b või f(x) b kui xa. Mõiste "piirväärtus kohal a asemel võib kasutada ka samaväärseid väljendeid "piirväartus punktis a"või "piirvärtus argumendi lähenemisel värtusele a". Kui lim(xa) f(x) = b siis viies argumendi x küllalt lähedale arvule a saame me muuta

Matemaatika → Matemaatiline analüüs
598 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

YMM3731 Matemaatiline analu¨u¨s I 2007/08 ~o.-a. su¨gissemestril 3,5 AP 4 2-0-2 E S Dots. Lembit Pallas TTU¨ Matemaatikainstituut V-404, tel. 6203056 e-post: [email protected] K¨asitletavad teemad on toodud punktide kaupa. Neid punkte tuleb vaadelda ka kui kollokviumide ja eksami teooriak¨ usimusi. 1. Funktsiooni m~oiste ja esitusviisid 2. Funktsioonide liigitamine (paaris- ja paaritud funktsioonid, perioodilised funktsioo- nid, kasvavad ja kahanevad funktsioonid) 3. P¨o¨ordfunktsioon 4. Liitfunktsioon 5. Jada piirv¨aa¨rtus 6. Funktsiooni piirv¨aa¨rtus ¨ 7. Uhepoolsed piirv¨aa¨rtused 8. L~opmatult kasvavad ja l~opmatult kahanevad suurused 9. Piirv¨a¨artusteoreemid 10. L~opmatult kahanevate suuruste v~ordlemine 11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfu...

Matemaatika → Matemaatiline analüüs
808 allalaadimist
thumbnail
6
pdf

Matemaatilised meetodid loodusteadustes.

Matemaatilised meetodid loodusteadustes. II kontrollt¨ o¨o, I variant 1. Leida j¨argmised piirv¨a¨artused (3p): 9 + x2 -2x4 - 3x3 + 1 2x lim , lim , lim x-3 (x + 3)2 x- x3 - 3x4 x x - ex Lahendus. 9 + x2 limx-3 (9 + x2 ) 18 1) lim = = = +, x-3 (x + 3)2 limx-3 (x + 3)2 +0 -2x4 - 3x3 + 1 x4 -2 - x3 + x14 -2 + 0 + 0 2 2) lim 3 4 = lim 4 2 = = x- x - 3x x- x x -3 0-3 3 ...

Loodus → Looduskaitsebioloogia
50 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H...

Matemaatika → Matemaatika
42 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonom...

Matemaatika → Matemaatiline analüüs
47 allalaadimist
thumbnail
1
docx

Mat.analüüs 1 spikker

ja pf.graaf kirjutada sin, cos, ikud sümmeetr.y=x suhtes+ tan=(2k+1/2)pi, ning k e Z, logf ekspf y=a_xpöördf+ Y=R. cot=X=R/(kpi||k e Z) arkused trigode pöördf-d Y=R alg.tehted: 2.funk.: muutuv.suurus:lõp kah+kasv y=f(x) ja g(x), ühine + tõk kui muutp on määramisp: 1) f ja g summa, tõk+kah*tõk on lõp kahanev! vahe,kor ja jag kirjut! piirv.omad: liitmine,-,*,/(ei liitfunk:2.funk 2 määrp. 0),C pid f.def: olgu...(x- Põh.elementaarf: (11!), kuidas >a):lõp.0 erinevpiirv.a(x)/b(x), saadud?polünoom ja ratsfun: siis sama j.lõp.kah.+kui =0, siis avaldis+ rats.on selle jagatis a~b +kui =0, siis a kõrg.j. b järj.muutuv suurus:eelnev, suhtes abs.ekstr.def.lõigul: järgnev+piirväärtus- a ümbrus, katkvp. Liigitus:ühep.lim-

Matemaatika → Matemaatiline analüüs
289 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

xn=a, xn-a= n *Kui suurusel piirväärtus on olemas, siis kehtib seos, et xn- a on tõkestamatult kahanev , siis saame xn=a+ n tõkestamatult kah suurus *Kui meil see vahe on tõkes kah siis iga puhul leidub N IN, mille korral | xn-a|< , n>N; arvtelg(x1,0,a- ,xN+1(üles),a,a+ ,x2(üles)) .*Järeldus 1)tõk kah suuruse piirväärtus on 0: limn-> n=0 2)tõk kasvava suuruse piirväärtus on võrdne : limn-> xn= 3)konstandi piirväärtus on tema ise 8. Laused piirv. Kohta Lause 1. kui suurusel on piirv olemas, siis on see üheselt määratud. Järeldus. Üks piirv: xn=a+ n, teine piirv: xn=b+ n=> a b=> kui avaldame ühe avaldise teisest, siis saame 0= (a-b)+( n- n); a-b(lõplik IR)= n- n(tõkestamatult kah suuruste vahe=> tõk kah suurus) =>vastuoluline a b, st piirväärtus üheselt määratud, mida oligi vaja tõestada. Lause2. Summa piirväärtus on piirväärtuste summa ja vahe on piirv vahe. Lause3. Korrutise

Matemaatika → Kõrgem matemaatika
147 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

TÕESTUSED, TULETUSKÄIGUD, PÕHJENDUSED!!! 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y = f'(a)x + , kus = r(x)x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f'(a)x ja teine on . M~olemad liidetavad on l~opmatult kahanevad protsessis x 0. V~ordleme neid suurusi x suhtes. Esiteks, eelduse f'(a) 0 p~ohjal saame lim dy x= lim f'(a)/x* x= lim f'(a) = f(a) 0. x0 x0 x0 Teiseks kehtib lim / x = lim r(x)x /x = lim r(x) = 0. x0 x0 x0 N¨aeme, et esimene liidetav, so diferentsiaal dy on sama j¨arku l~opmatult kahanev suurus kui x ja teine liidetav on k~orgemat j¨arku l~opmatult kahanev suurus x suhtes. J¨arelikult v¨aikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seet~ottu v~oime lugeda diferent...

Matemaatika → Matemaatika
47 allalaadimist
thumbnail
204
pdf

Topoloogilised ruumid

¨ TALLINNA TEHNIKAULIKOOL MATEMAATIKAINSTITUUT Peeter Puusemp TOPOLOOGILISED RUUMID Loengukonspekt Tallinn 2003 SISUKORD Eess˜ona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 TOPOLOOGILINE RUUM . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Topoloogilise ruumi definitsioon . . . . . . . . . . . . . . . . . . . 6 1.2 Topoloogilise ruumi baas . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Kinnised hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 ¨ 1.4 Ulesandeid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 ¨ 2 UMBRUSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Punkti u ¨mbruste s¨ usteem . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Topoloogia m¨a¨a...

Matemaatika → Matemaatiline analüüs 2
11 allalaadimist
thumbnail
2
doc

Matemaatiline analüüs

x ( y ) 0 z=(x; y) nim pidevaks piirk-s D kui ta on pidev selle piirk igas punkits Mitme muutuja f-ni osatuletised x z z=(x; y); xz=(x+x; y)-(x; y); yz=(x; y+y)-(x; y) Def1: Kahe muutuja f-ni z/x on def piirv lim Def2: x 0 x z z = lim y . Sama reegel kehtib ka =(x; y; z) korral. *Geomeetriline tõlgendus: z=(x; y); y y 0 y z z tan = z = lim x ; xz=(x+x; y)-(x; y)ja

Matemaatika → Matemaatiline analüüs
265 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I 1. teooria KT

1. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| =a kui a 0; -a kui a < 0. Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a||b| 3. |a + b| |a| + |b| 4. |a - b| ||a| - |b|| Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - ,a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-,a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Tõkestatud hulgad. Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (a,b) nii, et A (a,b). 2. Jäävad ja muutuvad suurused. Suurust, mis võib omandada erinevaid arvulisi väärtusi, nim...

Matemaatika → Matemaatiline analüüs 1
110 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs

n n f (Qk )sk k =1 ning = max sk 1 k n Def: lim f (Qk ) sk 0 k =1 ja piirv ei sõltu sellest kuidas on valitud punktid Pk joonel AB-ni ega sellest kuidas valitud punktid Qk osakaarel siis seda piirv nim f-ni f(x; y) esimest liiki B joonintegraaliks kaarepikkuse järgi. Tähistatakse: f ( x; y )ds ; f ( x; y )ds ; f ( x; y )ds . (Kui AB AB L

Matemaatika → Matemaatiline analüüs
341 allalaadimist
thumbnail
1
docx

Matemaatiline analüüs I teooria

1. Tõkestatud hulga mõiste. Ülalt/alt tõkestatud hulga mõiste. Tuua näide. 10,12Jada piirväärtus. Arvu a nimetatakse reaalarvude jada x 1, x2, x3, ... Tõkestatud hulga definitsioon ­ Reaalarvudest koosnevat hulka A piirväärtuseks, kui iga kuitahes vaikese positiivse arvu korral saab näidata nimetatakse tõkestatuks, kui leidub lõplik vahemik (a,b) nii, et A(a,b). sellist jada elementi xn , millest alates kõik järgnevad jada elemendid kuuluvad Tõkestamata hulgad on lõpmatud vahemikud. arvu a ümbrusesse (a ­ , a + ). Jada piirväärtust tähistatakse lim x n = a 2. Sõnastada arvu -ümbrus, arvu parem- ja vasakpoolne ümbrus. 11. Koonduva jada ja hajuva jada mõiste. kuitahes v aikese positiivse arvu korral saab n aidata sellist suuruse x v a Koonduv jada- lõplikku piirväärtust omav jada. Hajuv- mitteomav. a rt...

Matemaatika → Matemaatiline analüüs
10 allalaadimist
thumbnail
1
docx

Matemaatiline analüüs II toreeme ja definitsioone

Def.6''(geom) Punkti A nim jada Pn piirpunktiks, kui A igas ümbruses S(A,r) leidub naturaalarv N nii, et PnS niipea kui n>N. Def.7 Arvu nim funi w=F(P) piirväärtuseks kohal A ja tähist limP-Af(P)=, kui arvu iga ümbruse U korral leidub punkt A ümbrus S nii, et f(P)U niipea kui PS (PA,PD). Def.7' Arvu nim funi w=F(P) piirväärtuseks kohal A kui iga E>0 korral leidub arv >0 nii, et |f(P)-| piirv kohal A parajasti siis, kui on tõene järgmine implikatsioon lim nPn=A (PA,PnD) => lim f(Pn)= Def.8 Öeldakse, et fun w=f(P) on pidev kohal A kui on täidetud tingimus lim P-A f(P)=f(A). T.2. Fun w=f(P) on pidev kohal A kui kehtib lim P-A f(P)=f(A) ehk kui lõpmatult väikesele argumendi muudule vastab lõpmatu väike funktsiooni muut kohal A. T.3. (Weierstrasi teor.) Kinnises tõkestatud piirkonnas D pidev fun w=f(P) on tõkestatud (st. Leidub m ja M nii, et mf(P)M iga PD korral) T.4

Matemaatika → Matemaatika
24 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs 2 - Janno - teooria

Matemaatiline anal¨ uu¨ s II 1. osa 1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. Mitmem~ o~ otmelise ruumi definitsioon. Hulka, mille elementideks on k~oik m reaalarvust koosnevad j¨arjestatud s¨ usteemid (a1 , a2 , . . . , am ), nimetatakse m- m~o~ otmeliseks ruumiks, s¨ usteemi A = (a1 , a2 , . . . , am ) selle ruumi punktiks ja arve a1 , a2 , . . . , am punkti A koordinaatideks. m-m~ o~ otmelist ruumi t¨ahistame umboliga Rm . s¨ Ruumi Rm punkte A = (a1 , a2 , . . . , am ) ja B = (b1 , b2 , . . . , bm ) nimetatakse v~ ordseteks ja kirjutatakse A = B, kui nende koordinaadid on v~ordsed, st a1 = b1 , a2 = b2 , . . . , am = bm . Nullpunktiks ehk koordinaatide alguspunktiks ruumis Rm nimetatakse punkti O = (0, 0, . . . , 0). Kaugus ruumis Rm . Olgu ruum...

Matemaatika → Matemaatiline analüüs 2
702 allalaadimist
thumbnail
10
pdf

Matemaatiline analüüs I 1.teooria

Esimese kollokviumi (teooriatöö) kordamisküsimused  1. Tõkestatud hulga mõiste. Ülalt/alt tõkestatud hulga mõiste. Tuua näide.  Definitsioon:​ Hulka​  X ​ nimetatakse tõkestatud hulgaks, kui ​ X ​on ülalt ja alt tõkestatud.  Definitsioon​ :Kui  leidub  niisugune  reaalarv  ​ M​,  et  hulga  ​ X  ​ iga  elemendi  ​ x  ​puhul  kehtib  võrratus  x​ ≤  M,  siis  öeldakse, et hulk ​ X ​on ülalt tõkestatud, kusjuures arvu ​ M ​ nimetatakse hulga​  X​  ülemiseks tõkkeks.  Definitsioon​ :Kui  leidub  niisugune  reaalarv  ​ m​,  et  hulga  X  ​ iga  elemendi  x  ​ puhul  kehtib  võrratus  ​ x​≥m,  siis  öeldakse, et hulk ​ X ​on alt tõkestatud, kusjuures arvu ​ m ​ nimetatakse hulga​  X​  alumiseks tõkkeks.  Nt​: x={­1;1;3;5;7}  M=ülemine tõke=7  m=alumine tõke=­1  2. Sõnastada arvu ε­...

Matemaatika → Matemaatiline analüüs
37 allalaadimist
thumbnail
11
docx

Kordamisküsimusi 1. teema kohta - Teooriatöö I

Kordamisküsimusi 1. teema kohta 1. Mis on arvtelg? (lk 2) Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. 2. Defineerida reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Omadused: 1. | − a| = |a| 2. |ab| = |a| |b| 3. |a + b| ≤ |a| + |b| 4. |a − b| ≥ | |a| − |b| | 3. Millist hulka nimetatakse tõkestatuks? (lk 3) Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (c, d) nii, et A ⊂ (c, d). Tõkestatud hulgad on näiteks kõik lõplikud vahemikud (a, b), lõigud [a, b] ja poollõigud [a, b), (a, b] 4. Milline suurus on jääv ja milline suurus on muutuv? Mida nimetatakse muutuva suuruse muutumispiirkonnaks?...

Matemaatika → Matemaatika analüüs i
8 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

a sin t sin t sin t 42. Määratud integraali mõiste: Määratud integraali mõoiste. Tähistame pikima osalõigu [xi-1; xi] pikkuse sümboliga n, st n = max{x1; x2; ... ; xn}. Muudame lõigu [a; b] tükeldust järjest peenemaks selliselt et pikima osalõigu pikkus n läheneb nullile. Kui f on pidev lõigul [a; b] siis on integraalsummal Sn taolises piirprotsessis lõplik piirv. Seda piirv nimetatakse funktsiooni f määratud integraaliks lõigul [a; b] ja tähistatakse: ab f(x)dx 43. Määratud integraali omadusi: esimesed kaks ongi definitsioonid mis laiendavad määratud integraali juhule a b. 1. aa f(x)dx=0. 2. Kui a > b siis ab f(x)dx = - ab f(x)dx. Järgnev võrdsus väidab et intregreerimislõikude liitmisel integrallide väärtused liituvad: 3. ac f(x)dx = ab f(x)dx + bc f(x)dx. Summa integraal võrdub integraalide

Matemaatika → Matemaatiline analüüs
350 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs kontrolltöö

MITME MUUTUJ A FUNKTSIOON. PIIRV ÄÄRTUS. DIFERENTSEERIMINE Mitme muutuja funktsioon Mitme muutuja funktsiooni üldkuju: w = f ( x, y , z ,...) ( x, y, z ,...) D Kahe puntki vaheline kaugus: Puntkide P1 = ( x1 , y1 , z1 ,...) ja P2 = ( x2 , y 2 , z 2 ,...) vaheliseks kauguseks nimetatakse reaalarvu d ( P1 , P2 ) = ( x1 - x2 ) 2 + ( y1 - y2 ) 2 + ( z1 - z 2 ) 2 + ... . Punkti -ümbrus: Olgu mingi arv. Punkti P0 = ( x0 , y0 , z 0 ,...) -ümbruseks U ( P0 ) nim. kõigi selliste punktide P = ( x, y , z ,...) hulka, mille kaugused punktist P0 on väiksemad kui , s.t d ( P, P0 ) = ( x - x0 ) 2 + ( y - y0 ) 2 + ( z - z0 ) 2 + ... < . Hulga sisepunkt: Punkti P0 D nim. hulga D sisepunktiks kui leidub punkti P0 selline -ümbrus, mis kuulub hulka D, s.t U ( P0 ) D . Hulga rajapunkt: Punkti P0 ni...

Matemaatika → Matemaatiline analüüs
119 allalaadimist
thumbnail
4
pdf

Matemaatilise analüüsi kollokvium II spikker(2LK)

′ 𝑓 (𝑛−1) (𝑥)− 𝑓 (𝑛−1) (𝑎) Analoogiline väide peab paika ka vasakpoolse piirväärtuse ja samuti (kahepoolse) piirv. lorral. 𝑓 n-järku tuletiseks kohal a. 𝑓 (𝑛) (𝑎) ≔ [𝑓 (𝑛−1) (𝑎)] 𝑥=𝑎 = lim NB ! Nullid peaksid seal võrdusmärgi all ja üleval olema. 𝑥→𝑎 𝑥−𝑎

Matemaatika → Matemaatiline analüüs i
73 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun