Füüsika I osa eksami kordamisküsimused TEST........................................................................................................................................... 1 DEFINITSIOONID...................................................................................................................13 VALEMID (SEADUSED)........................................................................................................20 TEST Loeng 1 · Arvutüübid: naturaalarv, täisarv, ratsionaalarv, reaalarv, kompleksarv. naturaalarv loendamiseks kasutatavad arvud 0, 1, 2, 3, ... (mõnikord jäetakse 0 naturaalarvude hulgast välja); täisarv kõik naturaalarvud ja nende negatiivsed vastandarvud; ratsionaalarv need reaalarvud, mida saab esitada kahe täisarvu m ja n (n0) m/n.
1. RAHVUSVAHELINE MÕÕTÜHIKUTE SÜSTEEM SI. PÕHIÜHIKUD, ABIÜHIKUD JA TULETATUD ÜHIKUD SI-süsteem kasutab 7 füüsikalist suurust põhisuurustena ning nende suuruste ühikuid nimetatakse põhiühikuteks. Ülejäänud füüsikaliste suuruste mõõtühikud SI-süsteemis on tuletatud ühikud, need on määratud põhiühikute astmete korrutiste kaudu. Põhiühikud: m, kg, s, A, K, mol, cd. Abiühikud: rad, sr (steradiaan). Tuletatud ühikud: N, Pa, J, Hz, W, C 2. KLASSIKALISE FÜÜSIKA KEHTIVUSPIIRKOND. MEHAANIKA PÕHIÜLESANNE. TAUSTSÜSTEEM Seda makromaailma kirjeldavat füüsikat, mille aluseks said Newtoni sõnastatud
11.1.INERTSIAALNE TAUSTSÜSTEEM EINSTEIN JA MEIE Albert Einstein kui relatiivsusteooria rajaja MART KUURME Liikumise uurimine algab taustkeha valikust leitakse mõni teine keha või koht, mille suhtes liikumist kirjeldada. Nii pole aga alati tehtud. Kaks ja pool tuhat aastat tagasi arvas eleaatidena tuntud kildkond mõtlejaid, et liikumist pole üldse olemas. Neid võib osaliselt mõistagi. Sest kas keegi meist tunnetab, et kihutame koos maakera ja kõige temale kuuluvaga igas sekundis umbes 30 kilomeetrit, et aastaga tiir Päikesele peale teha? Eleaatide järeldused
keha trajektoori igas punktis trajektoori puutuja sihiliseks tangentsiaalkiirenduseks ning sellega risti olevaks normaalkiirenduseks ehk tsentrifugaalkiirenduseks) 2,* Ühtlaselt muutuv sirgjooneline liikumine. a=consT =>kolmikvalem, Keha liigub sirgjoonelisel trajektooril, kusjuures tema kiirendus on nii suunalt kui suuruselt muutumatu ning samasihilise kiirusega. Realiseerub olukorras, kus keha liigub muutumatu jõu toimel (näiteks vabalangemine raskusjõu väljas). dv a= =Const , kus a-kiirendus, v-kiirus, t-aeg. Peale integreerimist saame dt v ( t )=v 0 + at , kus v0-keha algkiirus ajahetkel t=0 Vastavalt kiiruse definitsioonile dx v= =v 0+ at , seda uuesti integreerides saadakse teada koordinaadi sõltuvus dt 1 ajast x ( t )=x 0 +v 0 t+ at 2 2 3, Ringjooneline liikumine. (TÄHISED) 1 υ= υ
1. Punktmassi kinemaatika. 1.1 Kulgliikumine 1.2 Vaba langemine 1.3 Kõverjooneline liikumine 1.4a Horisontaalselt visatud keha liikumine 1.4b Kaldu horisondiga visatud keha liikumine. 2. Pöördliikumine 2.1 Ühtlase pöördliikumisega seotud mõisted 2.2 Kiirendus ühtlasel pöördliikumisel 2.3 Mitteühtlane pöördliikumine. Nurkkiirendus 2.4 Pöördenurga, nurkkiiruse ja nurkkiirenduse vektorid. 3. Punktmassi dünaamika 3.1. Inerts. Newtoni I seadus. Mass. Tihedus. 3.2 Jõu mõiste. Newtoni II ja III seadus 3.3 Inertsijõud 4. Jõudude liigid 4.1 Gravitatsioonijõud 4.1a Esimene kosmiline kiirus. 4.2 Hõõrdejõud 4.2a Keha kaldpinnal püsimise tingimus. 4.2b Liikumine kurvidel 4.3 Elastsusjõud 4.3a Keha kaal 5 JÄÄVUSSEADUSED 5.1 Impulss 5.1a Impulsi jäävuse seadus. 5.1b Masskeskme liikumise teoreem 5.1c Reaktiivliikumine (iseseisvalt) 5.2 Töö, võimsus, kasutegur 5.3 Energia, selle liigid 5
Üldmõisted 1 Vektor suurus, mis omavad arvväärtust ja suunda. Mudeliks on geomeetriline vektor, mis on esitatav suunatud lõiguna. Vektoril on algus- ehk rakenduspunkt ja lõpp-punkt. Näiteks jõud, kiirus ja nihe. Skalaarid suurus, mis omab arvväärust aga mitte suunda. Mudeliks on reaalarv! Näiteks temperatuur, rõhk ja mass. 2 Tehted vektoritega vektoreid a ja b saab liita geomeetriliselt, kui esimese vektori lõpp-punkt ja teise vektori alguspunkt asuvad samas kohas. Liidetavate järjekord ei ole oluline. Kahe vektori lahutamise tehte saab asendada lahutatava vektori vastandvektori liitmisega, ehk b asemel tuleb -b. Vektori a komponendid ax ja ay same leida valemitega Vektori pikkuse ehk mooduli saab
En. juurdekasv avaldub: E=((Vv22/2)+Vgh2)-((Vv12/2)+Vgh1). Ideaalses vedelikus sisehõõrdejõud puuduvad, seepärast peab energia juurdekasv olema võrdne tööga, mille sooritavad rõhumisjõud. Rõhumisjõud voolutoru seintele on risti toru seinaga selle igas pun-ktis, seega nad antud juhul tööd ei tee. Nullist erinev on ainult lõige-tes S 1 ja S2 rakendatud jõudude töö. See töö A= p 1S1l1-p2S2l2 = =(p1-p2)V. Võrrutanud avaldised E ja A, jaganud saadud võrrandi liikmed V-ga ning kandnud ühesuguste indeksitega suurused ühele võrrandipoolele, saame: v1 /2+gh1+p1=v2 /2+gh2+p2. Lõiked S2 ja S2 olid võetud suvaliselt, seepärast võib väita, et voo-lutoru igas lõikes on 2 2 avaldise v2/2+gh+p väärtus ühesugune. Võrrand on päris täpne ainult lõikepinna S läheduses nullile, s.o. kui voolutoru tõmbub voolujooneks. Nii peab suurusi p, v ja h, mis esinevad võrrandi mõlemal poolel, omistama sama voolujoone
FÜÜSIKA RIIGIEKSAMI KONSPEKT TTG 2005 SISSEJUHATUS. MÕÕTÜHIKUD SI System International, 7 põhisuurust ja põhiühikut: 1. pikkus 1 m (mehaanika) 2. mass 1 kg (mehaanika) 3. aeg 1s (mehaanika) 4. ainehulk 1 mol (molekulaarfüüsika) 5. temperatuur 1 K (kelvini kraad, soojusõpetus) 6. elektrivoolu tugevus 1 A (elekter) 7. valgusallika valgustugevus 1 cd (optika) Täiendavad ühikud on 1 rad (radiaan) nurgaühik ja 1 sr (steradiaan) ruuminurga ühik. m m Tuletatud ühikud on kõik ülejäänud, mis on avaldatavad põhiühikute kaudu, näiteks 1 ,1 2 , s s kg m 1 N 2 , 1 J ( N m) . s Mitte SI ühikud on ajaühikud 1 min, 1 h, nurgaühik nurgakraad, töö- või energiaühik 1 kWh, rõhuühik 1 mmHg. Ühikute eesliited:
Kõik kommentaarid