Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

"taylori-valem" - 91 õppematerjali

thumbnail
3
doc

MATEMAATILINE ANALÜÜS I

ÕPPEAINE MATEMAATILINE ANALÜÜS I (kood YMM3731) PROGRAMM Õppeaine eesmärk · Anda ühe muutuja funktsiooni diferentsiaal- ja integraalarvutuse teoreeti-lised alused. · Õpetada lahendama mainitud teooriaga seotud põhilisi ülesandeid. · Näidata esitatud teooria võimalikke rakendusi praktikas ja teistes teadus- harudes. · Harjutada üliõpilasi matemaatilise sümboolikaga. Maht: 5 EAP ainepunkti, nädalatundide arv 2-0-2. Eeldusained: pole. Õppeaine sisu (orienteeruva loenguteks jaotusega): 1. Kasutatav sümboolika. Funktsiooni mõiste ja omadused. Elementaarfunktsioonid. 2. Jada piirväärtus. Arv e. 3. Funktsiooni piirväärtus. Joone asümptoodid. Lõpmata väikesed ja lõpmata suured suurused. Funktsiooni pidevus. Lõigul pidevate funktsioonide omadused. 4. Funktsiooni tuletis....

Matemaatika → Matemaatika analüüs i
210 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II. Eksami kordamisküsimuste vastused

1. Kahje muutuja funktsioonid(definitsioon, määramis- ja muutumispiirkonna definitsioon ja tähistused, näited, esitusviisid, ilmutamata kujul esituse definitsioon, graafik ja graafiku näiteid)  DEF: Kahe muutuja funktsioon f on kujutus, mis seab igale arvupaarile (x,y) ∈ D vastavusse ühe reaalarvu z= f ( x , y )  Nende punktide (x,y) hulka D, mille puhul funktsiooni väärtus on lõplik, nimetatakse selle funktsiooni määramispiirkonnaks.  Funktsiooni väärtuste z hulka Z nimetatakse funktsiooni muutumispiirkonnaks.  Esitusviis : z=f (x , y ) z- sõltuv muutja, (x,y)- sõltumatud muutujad  Näide:  Funktsioon võib olla antud ilmutatud kujul z= f (x1 , x2 , x3 , … x n) (z=x2+y2-5) või ilmutamata kujul F ( x 1 , x 2 , ...

Matemaatika → Matemaatiline analüüs 2
165 allalaadimist
thumbnail
7
doc

Matemaatilise analüüsi eksamikordamine

Tõestamisülesanded (1) 1. Osata tõestada, et mingi antud funktsioon on pidev etteantud piirkonnas (loengus näide e funktsiooni y = sin x kohta). 2. Tuletada funktsiooni y = sin x tuletise valem. 3. Tuletada funktsiooni y = cos x tuletise valem. Valem 1: + - cos - cos = -2 sin sin 2 2 y= cos (x+x) ­ cos x= (kasutad nüüd valemit 1) : = - 2 sin (x+x+x / 2) * sin (x+x ­x / 2) = -2 sin (2x/2 + x/2) * sin x/2= =-2 sin (x + x/2) * sin x/2 y/x= - 2 sin (x + x/2) * sin x/2 = - sin x/2 * sin (x+ x/2) x x/2 y'= lim - sin x/2 * sin (x+ x/2) = lim - sin x/2 * lim sin (x+ x/2) = - sin x x -> 0 x/2 -> 0 x -> 0 x/2 x/2 See ringi sees = -1 4. Tuletada funktsiooni y = arc sin x tulet...

Matemaatika → Matemaatiline analüüs
75 allalaadimist
thumbnail
14
docx

Matemaatilise analüüsi teine teooria KT

Matemaatilise analüüsi teine teooria KT 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat' lemma (tõestust ei küsi). Funktsioon peab olema määratud punkti ümbruses. Absoluutseid ekstreemume ei tohi segi ajada lokaalsete ekstreemumitega (aboluutse ekstreemumi puhul ei pea olema funktsioon punkti ümbruses määratud). Funktsiooni graafiku puutuja selles punktis on paralleelne x-teljega (ehk tuletis on null). 20. Kõrgemat järku tuletiste definitsioonid. 21. Funktsiooni Taylori polünoomi valem (tuletada pole vaja). Millal nimetatakse Taylori polünoomi McLaurini polünoomiks? 22. Funktsiooni kasvamise ja kahanemise seos tuletise märgiga (sõnastada vastav teoreem, tõestust ei küsi). 23. Funktsiooni kriitilise punkti definitsio...

Matemaatika → Algebra I
36 allalaadimist
thumbnail
3
docx

Kollokvium III 1.17-1.23 kõik

1.17. L'Hospitali reegel Reegel, abistamaks piirväärtuse leidmist. Lause 1. Kui ja eksisteerib ning , siiseksisteerib ka , kusjuures , st . Analoogiline v'ide peab paika ka vasakpoole piirväärtuse ja ka kahepoolse piirväärtuse korral. Tõestus. Eelduses, et eksisteerib sisaldub vaikimisi, et Olgu suurus selline, et . Vaatleme abifunktsioone: ja . Ning nendest järeldub, et , kusjuures . Et , siis funktsioonid F(x) ja G(x) rahuldavad Cauchy teoreemi eeldusi ning kehtib väide: . Vasakpoolse piirväärtusega analoogselt: (kirjutan ümber sama aint a-) Niiet kui on täidetud see sama tingimuste kompott ja kehtivad sellised piirväärtused ja eksisteerib , siis kehtib võrdus . N. N. 1.18.Taylori polünoom. Olgu y=Pn(x) n-järku vektorruum, kus baasiks on {1, x-a, (x-a)2,...,(x-a)n} . Leian kordajad Ck: Pn(a)=C0 . Diferentseerides mõlemaid pooli, saame, et . Analoogilist mõttekäiku jätkates jõuame tulemuseni: N. P2(x)=x2+x-7 [P2(x)=5+7/1!(x-3)+2/2!(x-...

Matemaatika → Matemaatiline analüüs
53 allalaadimist
thumbnail
6
docx

Mat. Analüüs I ; teooria II osa

Mat teooria II 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Loetleda diferentsiaali omadused. 2. Olgu antud funktsioon, mis diferentseerub punktis a ja eeldame, et Teades, et Nii me näitasime, et Tähistades ja vahe järgmiselt Kehtib võrratus: Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: Korrutades saadud avaldist saame: kus Nüüd näemegi, et koosneb kahest liidetavast, mis kahanevad piirprotsessis Võrdleme neid suuruseid suhtes: Lisaks kehtib veel: · Diferentsiaali omadused: 1. 2. 3. 4. 5. 3. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat' lemma. · Funktsiooni lokaalne maksimum ­ Funktsioonil on punktis lokaalne maksimum, kui: a) Funktsioon on määratud mingis ümbruses ( ...

Matemaatika → Matemaatiline analüüs i
17 allalaadimist
thumbnail
11
doc

Kollokvium II

1. Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning summa tuletis on tuletiste summa. Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Tõestus:Korrutise tuletisest y'=f'(x)g(x)+f(x)g'(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on y'=f(x)*c'+f '(x)*c=0*f(x)+c*f '(x)=c*f '(x) Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon y=f(x)+g(x) Tõestus: y=f(x)+g(x) esmalt, toimides sammhaaval, tehes eraldi tehetena komponendid, saame kolmandana saame aga, et 2).*Korrutise tuletise valemi tuletus: f(x) f'(x); f'(x): ning g'(x)= siis *Jagatise tuletis...

Matemaatika → Matemaatika analüüs i
189 allalaadimist
thumbnail
6
doc

Matemaatiline analüüs I, 2. kollokviumi spikker

1. Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning summa tuletis on tuletiste summa. Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Tõestus:Korrutise tuletisest y’=f’(x)g(x)+f(x)g’(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on Tõepoolest, valem kehtib juhul n=1. y’=f(x)*c’+f ’(x)*c=0*f(x)+c*f ’(x)=c*f ’(x) Nüüd tuleb näidata induktsioonisamm: eeldame, et valem kehtib juhul n-1 ja näitame, et sel juhul kehtib ta Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on ka n korral. Seega kehtib: diferentseeruv ka funktsioon y=f(x)+g(x) Tõestus: y=f(x)+g(x) esmalt, toimides sammhaaval, tehes eraldi tehetena komponendid,saame ...

Matemaatika → Matemaatiline analüüs 1
41 allalaadimist
thumbnail
3
doc

Mat. Analüüsi 2. KT konspekt (vähendatud programm)

Mat. Analüüsi 2. KT konspekt (vähendatud programm ) 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum kui: funktsioon on määratud punkti x1 mingi ümbruses ( ; ) ja iga x ( ; ) korral kehtib võrratus f(x) f(x 1). Öeldakse et funktsioonil on punktis x1 lokaalne miinimum kui: funktsioon f on määratud punkti x1 mingis ümbruses ( ; ) ja iga x kuulumisel ümbrusesse korral kehtib võrratus f(x) f(x1) Sõnastada Fermat' lemma . Kui funktsioonil on punktis x1 lokaalne ekstreemum ja funktsioon on selles diferentseeruv, siis f´(x1)=0 20. Kõrgemat järku tuletiste definitsioonid. Funktsiooni y=f(x) n-järku tuletiseks nimetatakse selle funktsiooni n-1 järku tuletise tuletist ja tähis...

Matemaatika → Matemaatiline analüüs
55 allalaadimist
thumbnail
7
pdf

Vähendatud programmi (A) TEINE teooriatöö

LIISI KINK 10 MATEMAATILINE ANALÜÜS I Teooria töö 2 18) Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. = + , kus = Mõlemad liidetavad on lõpmatult kahanevad protsessis 0. Diferentsiaal on sama järku lõpmatult kahanev suurus kui ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus suhtes. Kehtib ligikaudne valem kui 0. 19) Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat' lemma (tõestust ei küsi). Öeldakse, et funktsioonil on punktis lokaal...

Matemaatika → Matemaatika analüüs i
100 allalaadimist
thumbnail
3
doc

Täisprogrammi küsimustik

Täisprogrammi küsimustik Selle küsimustiku järgi saab ette valmistada teooria kontrolltööde B variantideks. Küsimustik on koostatud õppejõu konspekti põhjal. Kontrolltöödes ei küsita konspektis toodud näiteid ja väikeses kirjas olevaid osi. 1. Mitmemõõtmeline ruum. Punktid ja nende koordinaadid. Kaugus ja selle omadused. Polaarkoordinaadid ja nende seosed ristkoordinaatidega. 2. Parameetrilised jooned mitmemõõtmelises ruumis. Vektori parameetrilised võrrandid. Vektori pikkus ja koordinaadid. Mitmemõõtmeline ruum kui afiinne ruum. Samasuunalised ja vastassuunalised vektorid. Vektorite skalaarkorrutis. Mitmemõõtmeline ruum kui eukleidiline ruum. Cauchy- Schwartzi võrratus. 3. Lahtised ja kinnised kerad. Punkti ümbrus. Sise- ja rajapunktid. Lahtised ja kinnised hulgad. Sidus hulk. Tõkestatud hulk. 4. Mitmemõõtmelise muutuva suuruse mõiste. Suuruse muutumispiir...

Merendus → Meresõidu...
27 allalaadimist
thumbnail
3
pdf

Matemaatiline analüüs II, I teooriakusimused 2013

Matemaatilise analüüsi (II) I osaeksami teooriaküsimused 2013 1. Kahe muutuja funktsiooni väärtuspaaride (x; y) hulka, mille puhul definitsioon. Määramispiirkond. funktsioon z = f (x; y) on määratud, Kahe muutuja funktsiooni nimetatakse selle funktsiooni geomeetriline kujutamine. määramispiirkonnaks. Kui kahe teineteisest sõltumatu muutuva suuruse x ja y igale väärtuspaarile (x; y) mingisugusest nende muutumispiirkonnast D vastab suuruse z väärtus, siis öeldakse, et z on kahe sõltumatu muutuja x ja y funktsioon, mis on määratud piirkonnas D. Argumentide x ja y 2. Kahe muutuja funktsiooni , saame z uue muudu z, mida osamuudu ja täismuudu mõisted nimetatakse funktsiooni z (kujutada ka joonisel). täismuuduks ja mis on määratud Et y väärtus sellel tasa...

Matemaatika → Matemaatiline analüüs 2
310 allalaadimist
thumbnail
4
pdf

Matemaatilise analüüsi kollokvium II spikker(2LK)

1). (Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning Definitsioon: Funktsiooni y = f (x) nimetatakse rangelt kasvavaks punktis x, kui leidub selline summa tuletis on tuletiste summa). Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad positiivne arv δ, et suvaliste x1 ϵ (x - δ; x) ja x2 ϵ (x; x + δ) korral f (x1) < f (x) < f (x2). punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Lause: Kui funktsioon y = f (x) on rangelt kasvav punktis x, siis leidub selline δ > 0, Tõestus:Korrutise tuletisest y’=f’(x)g(x)+f(x)g’(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on y’=f(x)*c’+f ’(x)*c=0*f(x)+c*f ’(x)=c*f ’(x) L...

Matemaatika → Matemaatiline analüüs i
73 allalaadimist
thumbnail
32
pdf

Matemaatilise analüüsi kollokvium nr.2

1. Näidata, et xϵRn korral rahuldab normi aksioome 2. puudu  || x ||1:  k | xk | 3. Näidata, et xϵRn korral rahuldab normi aksioome Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile seab vastavusse skalaari , kusjuures on täidetud järgnevad tingimused: 1). 2). 3). 4. Tõestada üks segatuletiste võrdsuse piisav tingimus. 5. Näidata, et diferentseeruv kahe-või mitmemuutuja funktsioon on pidev. 6. Näidata, et kahe-või mitmemuutuja funktsioon on diferentseeruv, kui tema osatuletised on pidevad. 7.Liitfunktsiooni tuletise ja osatuletise valemid. Üks neist tuletada. Kui funktsioonid xi = xi (t) (i = 1; … ; n) on diferentseeruvad punktis t ja funktsioon u = f (x) on diferentseeruv punktis P(x1(t);…..; xn(t)), siis liitfunktsiooni f (x1(t); … ; xn(t)) = f (x(t)) = u(t) tuletis punktis t avaldub kujul Kui funktsioonid x = x(u; v) ja y = y(u; v) on diferentseeruvad punktis P(u; v) ning funktsioon ...

Matemaatika → Matemaatiline analüüs 2
78 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs 2 KT

KT 2, MAT. ANALÜÜS 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? Tõestada ei ole vaja.  ∆y = f’(a)∆x + β  Diferentsiaal ja jääkliige on lõpmatult kahanevad protsessis ∆x → 0. 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat’ lemma (tõestust ei küsi). Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ) korral kehtib võrratus f(x) ≤ f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ ) korral kehtib võrratus f(x) ≥ f(x1).  Fermat’ lemma - kui funktsioonil f on pun...

Matemaatika → Matemaatika
14 allalaadimist
thumbnail
6
docx

Matemaatilise analüüsi eksamiks valmistumine

Kordamisküsimused 1. Funktsioon - Olgu X mingi reaalarvude hulk. Kui muutuja x igale väärtusele hulgas X vastab muutuja y üks kindel väärtus, siis öeldakse, et y on muutuja x funktsioon. Funktsiooni esitusviis: tabelina, graafikuna. Funktsiooni analüütiline esitusviis on ilmutatud, ilmutamata, parameerilisel kujul. 2. Funktsioonide liigitus (paaris- ja paaritud funktsioonid, perioodilised funktsioonid, monotoonsed funktsioonid, tõkestatud funktsioonid). Tuua näiteid. paarisfunktsioon - Funktsiooni y = f (x) nimetatakse paarisfunktsiooniks, kui f (-x) = f (x) Paarisfunktsiooni graafik on sümmeetriline y-telje suhtes paaritu funktsioon - Funktsiooni y = f (x) nimetatakse paarituks funktsiooniks, kui f (-x) = -f (x). paaritu funktsiooni graafik on 0 punkti suhtes sümmeetriline perioodiline funktsioon - Funktsiooni f (x) nimetatakse perioodiliseks, kui l...

Matemaatika → Matemaatiline analüüs
136 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs KT2

20. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f (a)0. Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Näeme, et esimene liidetav, so diferentsiaal dy on sama järku lõpmatult kahanev suurus kui x ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus x suhtes. Järelikult väikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seetõttu võime lugeda diferentsiaali dy funktsiooni muudu peaosaks. Jääkliikme võib väikese x korral funktsiooni muudu avaldises ära jätta. Kehtib ligikaudne valem y dy kui x 0 . 21. FUNKTSIOONI LOKAALSETE EKST...

Matemaatika → Matemaatiline analüüs
231 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs II, 1. kollokvium

Contents Contents...................................................................................................................... 1 4.Mitme muutuja funktsiooni piirväärtus. Pidevus........................................................ 5 7) Liitfunktsiooni tuletise ja osatuletise valemid. Uks neist tuletada.............................. 6 8) Defineerida funktsiooni tuletis etteantud suunas. Tuletada suunatuletise valem funktsiooni osatuletiste kaudu. Gradient. Telgedesuunalised tuletised. Suunatuletise tõlgendus..................................................................................................................... 9 10. Olgu mitmemuutuja funktsioon u = f (x) antud ilmutamata kujul võrrandiga F(x,u)= 0. Tuletada valem funktsiooni f osatuletiste jaoks funktsiooni F osatuletiste kaudu. Valem tuletada kas kahe muutuja juhul (x = (x, y) R2) või üldjuhul (x Rn)...........11 12.Tuletada Taylori valem kahe- või mitmem...

Matemaatika → Matemaatiline analüüs 2
853 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II kontrolltöö

Matemaatiline analüüs II kontrolltöö Punktid 23-45 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) Loetleda diferentsiaali omadused. a. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana b. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) c. Loetleda diferentsiaali omadused c.1. c.2. c.3. c.4. c.5. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid.Sõnastada ja tõestada Fermat' lemma. a. Funktsiooni lokaalsete ekstreemumite definitsioonid a.1. Öeldakse, et funktsioonil f on punktis x lokaalne miinimum, kui ...

Matemaatika → Matemaatiline analüüs
122 allalaadimist
thumbnail
8
pdf

Matemaatiline analüüs - valmistumine Eksamiks

1. Kahe muutuja funktsioonid (definitsioon, määramis-ja muutumispiirkonna definitsioon ja tähistused, näited, esitusviisid, ilmutamata kujul esituse definitsioon, graafik ja graafiku näited). 2. Nivoojoone mõiste (definitsioon, näited ja omadused). 3. Kolme muutuja funktsioon (definitsioon, näited). 4. Osatuletised (definitsioon, tähistused). Tõlgendus – mida näitab osatuletis? Kuidas leida osatuletisi? 5. Ekstreemumid (lokaalse maksimumi ja miinimumi definitsioon). 6. Statsionaarne punkt (definitsioon). 7. Lokaalsete ekstreemumite leidmise algoritm. 8. Globaalsete ekstreemumite leidmise algoritm. Võrdlus lokaalsete ekstreemumite leidmisega. 9. Pinna puutujatasandi võrrand. Mis on lineariseerimine ja mis on selle idee? 10. Täisdiferentsiaali valem. Rakendusi (nt veahinnang). 11. Gradient (definitsioon, omadused ja tähistuse...

Matemaatika → Matemaatiline analüüs ii
37 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame p...

Matemaatika → Matemaatiline analüüs
973 allalaadimist
thumbnail
4
docx

Kollokvium 1

1. Funktsiooni mõiste, esitusviisid ja liigitamine. o Kui muutuja x igale väärtusele piirkonnast X on reegli f abil seatud vastavusse muutuja y täpselt üks väärtus piirkonnas Y, siis öeldakse, et y on muutuja x funktsioon piirkonnas X ja tähistatakse kujul y = f (x). o Funktsiooni põhilised esitusviisid. Ilmutatud kuju y = f (x). Nt y = a x +b; y = ax2 + b x + c Ilmutamata kuju f (x, y) = 0. Nt x2 + y2 = 4 Parameetriline kuju . Nt Geomeetriline esitus graafiku abil. o Numbriline esitus tabeli abil. Funktsioonide liigitamine. Paaris- ja paaritud funktsioonid. Funktsiooni y = f (x) nimetatakse paarisfunktsiooniks, kui f (-x) = f (x), ja paarituksfunktsiooniks, kui f (-x) = -f (x) iga x korral määramispiirkonnast X. Perioodilised funkts...

Matemaatika → Matemaatiline analüüs
206 allalaadimist
thumbnail
2
pdf

Matemaailine analüüs I kollokvium III spikker

1). (Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata 7).(Lihtsamate osamurdude integreerimine. Valemite tuletamine). 12. (Näidata, et kui funktsioonid f (x) = g(x) välja arvatud lõplikus arvus punktides, siis integraal kui tuletise ja diferentsiaali pöördoperaator). Tõestame selle järelduse juhul, kui g(x) f(x) vaid punktis x=c [, ]. () Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust [, ] selle lõigu tükeldus, kusjuures [-1 , ]. Kuna g(x) = O(1) (x[a,b]) F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus ...

Matemaatika → Matemaatika analüüs i
139 allalaadimist
thumbnail
6
docx

Vähendatud programmi teooria 2

Matemaatiline analüüs I (Vähendatud programmi teooria vastused) Lokaalse ekstreemumi mõiste. Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib võrratus f(x) f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ¨umbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib v~orratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks ekstreemumiteks. Fermat' lemma. Kui funktsioonil f on punktis x1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f(x1) = 0. Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a, b) vähemalt üks punkt c nii, et f(c) = 0. Rolle'i teoreemil on lihtne g...

Matemaatika → Matemaatiline analüüs
131 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

Ainekava eksamiks ,, Matemaatiline analüüs I " 2007 ­ 2008 kevadsemester 1. Naturaalarvud, täisarvud, ratsionaalarvud, irratsionaalarvud, reaalarvud. Naturaalarvud ­ arvud, mis saadakse loendamise teel, tähistatakse: IN (1, 2, 3, 4, 5, 6, ..., ) Täisarvud ­ kõik naturaalarvud ja nende vastandarvud ning lisaks 0, tähistatakse Z m Ratsionaalarvud ­ on sellised reaalarvud, mida saab esitada kahe täisarvu m ja n jagatisena nii et n n 0 . Igal ratsionaalarvul on ka lõpmatu kümnendmurdarendus ja see on alati perioodiline, tähistatakse Q Irratsionaalarvud ­ mitteperioodilised lõpmatud kümnendmurrud. Tähistus I Reaalarvud ­ hulk R, koosneb k...

Matemaatika → Matemaatiline analüüs i
776 allalaadimist
thumbnail
10
docx

Kordamisküsimusi 3. teema kohta - Teooriatöö II

Kordamisküsimusi 3. teema kohta 1. Defineerida funktsiooni tuletis. Mis on diferentseeruv funktsioon ja diferentseerimine? Funktsiooni f tuletiseks punktis a nimetatakse järgmist suurust: f ( x )−f (a) f ' ( a )=lim x→ a x−a Kui funktsioon f omab punktis a lõplikku tuletist, siis öeldakse et ta on selles punktis diferentseeruv. Tuletise arvutamist nimetatakse diferentseerimiseks. 2. Esitada tuletise valem funktsiooni muudu ja argumendi muudu kaudu. Tuletist defineeriva piirväärtuse võib kirja panna ka argumendi muudu ja funktsiooni muudu kaudu. Olgu nii nagu ennegi: ∆x = x − a → argumendi muut kohal a , ∆y = f(x) − f(a) →funktsiooni muut kohal a . Siis f ( x )−f ( a) ∆y ∆y f ' ( a )=lim =lim =lim x→ a x−a x→a ∆ x x→ 0 ∆ x 3. Sõnastada j...

Matemaatika → Matemaatika analüüs i
5 allalaadimist
thumbnail
14
doc

Teooria vastused II

1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. · Mitmemõõteliseks ruumiks nimetakse hulka , mille elementideks on kõik reaalarvust koosnevad järjestatud süsteemid ( a1, a2, ..., an). · Mitmemõõtmelise ruumi punktiks nim mitmemõõtmelise ruumi ( a1, a2, ..., an) süsteemi A=( a1, a2, ..., an). · Kaugus mitmemõõelises ruumis. Kui A=( a1, a2, ..., an) ja B=( b1, b2, ..., bn) siis |AB|= (a1-b1)+ (a2-b2)+ ...+ (an-bn) · Kauguste omadused: A=B siis ja ainult siis, kui |AB|=0 |AB|=|BA| |AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi ...

Matemaatika → Matemaatiline analüüs 2
335 allalaadimist
thumbnail
14
doc

Matemaatiline analüüs II Teooria

1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. · Mitmemõõteliseks ruumiks nimetakse hulka , mille elementideks on kõik reaalarvust koosnevad järjestatud süsteemid ( a1, a2, ..., an). · Mitmemõõtmelise ruumi punktiks nim mitmemõõtmelise ruumi ( a1, a2, ..., an) süsteemi A=( a1, a2, ..., an). · Kaugus mitmemõõelises ruumis. Kui A=( a1, a2, ..., an) ja B=( b1, b2, ..., bn) siis |AB|= (a1-b1)+ (a2-b2)+ ...+ (an-bn) · Kauguste omadused: A=B siis ja ainult siis, kui |AB|=0 |AB|=|BA| |AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi ...

Matemaatika → Matemaatiline analüüs 2
184 allalaadimist
thumbnail
86
docx

Kõrgem Matemaatika 2

Eksami mõisted (35 punkti), igale küsimusele võivad lisanduda näited. I osa Algebra ja geomeetria (8 punkti) 1. Vektorruumi mõiste, omadused. 2. Vektorruumi alamruum. Lineaarkate - alamruumi oluline näide. 3. Vektorsüsteemi lineaarne sõltuvus ja sõltumatus. 4. Moodustajate süsteem. 5. Vektorruumi baas. Vektori koordinaadid baasi suhtes. 6. Vektorid. Geomeetrilise vektori mõiste. Lineaartehted, tehete omadused. Vektori projektsioon sirgele, teljele. Vektori pikkus. Vektori ja punkti koordinaadid 3- mõõtmelises ruumis. 7. Skalaarkorrutise mõiste. Skalaarkorrutise omadused. Skalaarkorrutise arvutamine koordinaatkujul. 8. Vektorite ristseisu ja kollineaarsuse tingimused. Kahe vektori vahelise nurga leidmine. 9. Vektorkorrutise mõiste. Vektorkorrutise omadused. Vektorkorrutise arvutamine koordinaatkujul. Rööpküliku ja kolmnurga pindala arvutamine. 10. . Segakorrutise mõiste. Segako...

Matemaatika → Kõrgem matemaatika ii
63 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs II

1. Kahemuutuja funktsiooni integraalsumma mõiste ja geomeetriline sisu. · Olgu D kinnine tõkestatud piirkond ruumis R2. Olgu z = (x,y) piirkonnas D määratud pidev funktsioon. Jaotame piirkonna D n tükiks S1,S2,...,Sn.Tähistagu Si samaaegselt nii i-ndat tükki kui ka i-nda tüki pindala.Valime igalt tükilt ühe punkti P ja moodustame järgmise summa: Vn= (P1) S1 + (P2) S2+...+ (Pn) Sn Seda summat Vn nim funktsiooni integraalsummaks piirkonnas D · Olgu (x,y) 0. siis saab integraalsummas olevat korrutist (P i) Si tõlgendada kui silindri ruumala, mille põhi on S i ja kõrgus (Pi) Selline silinder tähistatakse Zi-ga. IntegraalsummaVn on järelikult silindrite ühendi Z=Z1 U Z2 U...U Zn ruumala. Silindrite ühend Z on treppkeha, mille ülemine pind on tükiti tasapinnalineomades hüppeid erinevate kõrgustega naaber silindrite liitekohtades. 2. Kahek...

Matemaatika → Matemaatiline analüüs
523 allalaadimist
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

Matemaatilise analüüsi II Kontrolltöö 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. a. Teades, et ­argumendi muut kohal a -funktsiooni muut kohal a a.i. Nii me näitasime, et a.ii. Tähistades ja vahe järgmiselt a.iii. Kehtib võrratus: a.iv. Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: a.v. Korrutades saadud avaldist saame: kus a.vi. Nüüd näemegi, et koosneb kahest liidetavast, esimeseks dy= ja teine on , mis kahanevad piirprotsessis a.vii. Võrdleme neid suuruseid suhtes: a.viii. Lisaks kehtib veel: a.ix. Nüüd teame,et diferentsiaal dy on sama järku kahanev suur...

Matemaatika → Matemaatiline analüüs 2
100 allalaadimist
thumbnail
2
odt

Matemaatiline analüüs I, II kollokviumi spikker

1. Funktsiooni diferentseeruvuse geomeetriline tõlgendus. 11. Kumerus, nõgusus, käänupunktid. Seos teist järku tuletisega. Funktsiooni diferentsiaal on kõverjoonele y = f(x) tõmmatud puutuja ordinaadi muut, mis vastab Oeldakse, et funktsiooni f(x) graafik on kumer punktis a (tapsemini punktis (a, f(a))), kui leidub punkti a argumendi numbrile x=dx. selline -umbrus, et funktsiooni f(x) graafik on argumendi x väärtustel ümbrusest (a - , a + ) allpool 2. Funktsiooni kõrgemat järku tuletised. (tapsemini, mitte ulalpool) puutujat, mis on tõmmatud punktis (a, f(a)) funktsiooni graafikule. Oeldakse, et funktsiooni f(x) graafik on kumer hu...

Matemaatika → Matemaatiline analüüs
33 allalaadimist
thumbnail
28
pdf

Kolmas kollokvium

Teooria 3 1.Riemanni summa. Määratud integraali (Riemanni mõttes) definitsioon. Riemanni summa lõigul [a,b] (f) = ∑ . Kui eksisteerib piirväärtus = ∑ , mis ei sõltu [a,b] osalõikudeks jaotamise viisist ega punktide valikust, siis öeldakse, et funktsioon f(x) on integreeruv (Riemanni mõttes) lõigul [a,b] ning seda piirväärtust nimetatakse funktsiooni f(x) määratud integraaliks ehk Riemanni integraaliks lõigul [a,b] ja seda tähistatakse ∫ . 2. Darboux ülem-ja alamsummad. Riemanni summa ja Darboux’ summade seos. Olgu funktsioon f tõkestatud lõigul [a,b]. Siis tükelduse igal osalõigul [ ] leiduvad lõplikud ülemine ja alumine raja ja ning me saame defineerida Darboux’ ülemsumma: ̅ (f)=∑ ja Darboux’ al...

Matemaatika → Matemaatika
24 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

TÕESTUSED, TULETUSKÄIGUD, PÕHJENDUSED!!! 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y = f'(a)x + , kus = r(x)x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f'(a)x ja teine on . M~olemad liidetavad on l~opmatult kahanevad protsessis x 0. V~ordleme neid suurusi x suhtes. Esiteks, eelduse f'(a) 0 p~ohjal saame lim dy x= lim f'(a)/x* x= lim f'(a) = f(a) 0. x0 x0 x0 Teiseks kehtib lim / x = lim r(x)x /x = lim r(x) = 0. x0 x0 x0 N¨aeme, et esimene liidetav, so diferentsiaal dy on sama j¨arku l~opmatult kahanev suurus kui x ja teine liidetav on k~orgemat j¨arku l~opmatult kahanev suurus x suhtes. J¨arelikult v¨aikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seet~ottu v~oime lugeda diferent...

Matemaatika → Matemaatika
47 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks avaldame kõigepealt võrdusest suhte ja korrutame saadud avaldise x-ga. Saame valemi Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Võrdleme neid suurusi x suhtes. Esiteks, eelduse f(a) 0 põhjal saame : Teiseks kehtib valem :...

Matemaatika → Matemaatiline analüüs i
121 allalaadimist
thumbnail
4
docx

Matemaatiline analüüs, kollokvium 2

∆y f ( x+ ∆ x )−f (x) f’(x) = lim = lim Geomeetriline tõlgenus: tuletise f(x) väärtus argumendi x antud ∆ x→ 0 ∆x ∆ x→ 0 ∆x väärtusel = x-telje positiivse suuna ja funktsiooni f(x) graafikule punktis M 0(x,y) joonestatud puutuja vahelise nurga tangensiga. f’ on mingis punktis graafikule tõmmatud puutuja tõusunurga tangens. f’(x) = tan α. f ' ( x )−f ' (a) f ( n−1 ) ( x )−f ( n−1 ) (a) f’’(a) := [f’(a)]’x=α = lim f(n)(a) := [f(n-1)(a)]’x=a = lim x→ a x−a x→ a x−a dy Avaldis ...

Matemaatika → Matemaatiline analüüs
38 allalaadimist
thumbnail
16
pdf

Teooria 2. kollokvium

Teooria 2. kollokvium 1.Funktsiooni diferentseeruvuse geomeetriline tõlgendus 2. Funktsiooni kõrgemat järku tuletised. Kui funktsioonil 𝑓′ eksisteerib tuletis punktis a, siis seda tuletist nimetatakse funktsiooni 𝑓 teist järku tuletiseks kohal a. 𝑓′ (𝑥)−𝑓′ (𝑎) 𝑓 ′′ (𝑎) ≔ [𝑓 ′ (𝑎)]′𝑥=𝑎 = lim𝑥→𝑎 𝑥−𝑎 Kui funktsioonil 𝑓 (𝑛−1) eksisteerib tuletis punktis a, siis seda tuletist nimetatakse funktsiooni 𝑓 n- järku tuletiseks kohal a. ′ 𝑓 (𝑛−1) (𝑥) − 𝑓 (𝑛−1) (𝑎) 𝑓 (𝑛) (𝑎) ≔ [𝑓 (𝑛−1) (𝑎)] 𝑥=𝑎 = lim 𝑥→𝑎 𝑥−𝑎 3. Funktsiooni diferentsiaal ja selle omadused. Korgemat järku diferentsa...

Matemaatika → Matemaatika
15 allalaadimist
thumbnail
5
docx

Teine osaeksam, matemaatiline analüüs I, teooriaküsimused

Matemaatilise analüüsi (I) II osaeksami teooriaküsimused (Tallinnas õppivatele kaugõppijatele) 1. Funktsiooni muudu peaosa ja funktsiooni diferentsiaal. Sõltumatu muutuja diferentsiaal. Funktsiooni diferentsiaali valem. Ligikaudse arvutamise valem. Funktsiooni muut y koosneb kahest liidetavast, millest esimene [kui f ( x ) 0 ] on muudu niinimetatud peaosa, mis on võrdeline argumendi muuduga x . Korrutist f ( x ) x nimetatakse funktsiooni diferentsiaaliks ja tähistatakse sümboliga dy või df ( x ) . Sõltumatu muutuja x diferentsiaal dx ühtib tema muuduga x . dy f ( x ) = Funktsiooni diferentsiaali valem: dy = f ( x ) dx ehk dx Ligikaudse arvutamise valem: f ( x + x ) f ( x ) + f ( x ) x 2. Kõrgemat järku tuletised. Funktsiooni teist järku tuletiseks ehk teiseks ...

Matemaatika → Matemaatika analüüs i
147 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x...

Matemaatika → Matemaatiline analüüs 2
37 allalaadimist
thumbnail
21
docx

Matemaatiline analüüs 1, teine teooriatöö kordamisküsimused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y ' =f ( a ) +r ( x ) x Korrutame saadud avaldise x-ga ja saame y=f ' ( a ) x+ , kus =r ( x ) x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (Tõestada) ' lim f ( a ) x dy lim r ( x ) x =¿ x o = lim f ' ( a )=f ' ( a ) 0 x x x o lim = x o = lim r ( x ) =0 lim ¿ x o x x x o x o Loetleda diferentsiaali omadused ...

Matemaatika → Matemaatika
10 allalaadimist
thumbnail
14
doc

Kollokvium III

1. Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata integraal kui tuletise ja diferentsiaali pöördoperaator. Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus F(x) on funktsiooni f (x) mingi algfunktsioon ja C on suvaline konstant (integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja tähistatakse st . Määramata integraali tuletis on võrdne integreeritava funktsiooniga st ( )'= f(x). Tõestus: ( )'= (F(x)+C)'=F'(x)= f(x). d( )= ( )'dx = f(x)dx = F'(x)dx= dF(x). Operaatorit L:V->W nimetame lineaarseks kui on täidetud tingimused: a)L(f+g)= L(f) + L(g) kui f, g V (aditiivsus) b) L(cf) = cL(f) kui f V ja c R (homogeensus). Määramata integraal on lineaarne operaato...

Matemaatika → Matemaatiline analüüs
107 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 2

Hulkade H1,....,Hn, otsekorrutiseks e Cartesiuse korrutiseks H1x...xHn nim kõigi järjendite (h1...hn), kus hkHk (k=1,...,n), hulka. Järjendit nim ka korteeziks. Kui Hk=H (k=1,...,n), siis n teguri, millest igaüks on H, otsekorrutise H x...x H jaoks kasutatakse ka tähistust Hn Aritmeetiliseks punktruumiks Rn nimetatakse otsekorrutist Rn, kus R tähistab reaalarvude hulka. Aritmeetiliseks vektorruumiks Rn nimetatakse hulka Rn, mille elementidel on defineeritud liitmine ja arvuga korrutamine järgmiselt: (x1,...,xn)+(y1,...,yn)=(def) (x1+y1,...,xn+yn), (x1,...,xn)=(def) (x1,...,xn), kus (x1,...,xn), y1,...,yn) Rn ja R Ruumi Rn punktide p(x1,...,xn) ja Q(y1,...,yn) vaheliseks kauguseks nim arvu d(P,Q)= ( x1 - y1) 2 + ... + ( xn - yn) 2 . Vektorruumi Rn vektorite x=(x1,...,xn) ja y=(y1,..,yn) skalaarkorrutiseks nim arvu x*y=x1y1+...+xnyn Vektorruumi Rn nullvektorist erinevate vektorite x=(x1,...,xn) ja y=(y1,...,yn) vahelise nurga koosinuse...

Matemaatika → Matemaatiline analüüs 2
166 allalaadimist
thumbnail
7
docx

Majandusmatemaatika teooria

Majandusmatemaatika teooria 1.Mis on funktsioon? Kui hulga X igale elemendile x on seatud vastavusse kindel element y hulgast Y, siis öeldakse, et hulgal X on defineeritud funktsioon. Mis on sõltumatu muutuja, sõltuv muutuja? Elementi x nimetatakse sõltumatuks muutujaks ehk argumendiks, elementi y sõltuvaks muutujaks ehk (elemendi x) kujutiseks. Sõltumatu muutuja - algebra: Valemis iga muutuja, mille väärtus ei sõltu ühestki teisest muutujast. statistika: Muutuja, mida eksperimentide seeria käigus muudetakse. Sõltuv muutuja - algebra: Valemis muutuja, mille väärtus sõltub ühest või enamast teisest muutujast. statistika: Mõõdetav suurus, mis näitab kohtlemise efektiivsust. 2. Mis on funktsiooni määramispiirkond? Hulka X nimetatakse funktsiooni määramispiirkonnaks, määramispiirkond on funktsiooni argumendi nende väärtuste hulk, mille korral funktsiooni väärtus on defineeritud. Funktsiooni f sisendväärtuste hulka X ...

Matemaatika → Majandusmatemaatika
76 allalaadimist
thumbnail
12
docx

Matemaatiline analüüs I 3. kollokviumi spikker

Küsimused: 1.Määratud integraali (Riemanni mõttes) definitsioon. Darbouc ülem- ja alamsummad. Riemanni summa ja Darboux’ summade seos-viimane pilt. ∫ f ( x ) dx st ∫ f ( x ) dx=F ( x ) +C . Määramata integraali tuletis on f (¿ ξi) ∆ xi SΠn n võrdne integreeritava funktsiooniga st ( ∫ f ( x ) dx )’= f(x). Tõestus: ( ∫ f ( x ) dx Riemanni summa lõigul [a,b] (f) = ∑¿ . ...

Matemaatika → Matemaatiline analüüs 1
24 allalaadimist
thumbnail
16
doc

Kordamisküsimused - vastused

MATEMAATILINE ANALÜÜS II Kood YMM0012 3,5 AP KORDAMISKÜSIMUSED 1. Mitme muutujaga funktsiooni mõiste m-muutuja funktsiooniks nimetatakse kujutist, mis seab suuruse P igale väärtusele tema muutumispiirkonnast D vastavusse suuruse z ühe kindla väärtuse Mitmemuutuja funktsioon graafik Funktsiooni z=f(x1,x2,...,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises...

Matemaatika → Matemaatiline analüüs 2
511 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Matemaatiline analüüs 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus: ∆y = f’(a)∆x + β , kus β = r(∆x)∆x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆ x suhtes, kui ∆ x läheneb nullile? (tõestada!). funktsiooni muut ∆y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f’(a)∆x ja teine on β. Mõlemad liidetavad on lõpmatult kahanevad protsessis ∆x → 0. Võrdleme neid suurusi ∆x suhtes. Esiteks, eelduse f’(a)  0 põhjal saame lim dy ∆x= lim f’(a)/∆x* ∆x= lim f’(a) = f(a)  0. ∆x→0 ∆x→0 ∆x→0 Teiseks kehtib lim β/ ∆x = lim r(∆x)∆x /∆x = lim r(∆x) = 0. ∆x→0 ∆x→0 ∆x→0 Näeme, et esimene liidetav, so diferentsiaal dy on sama järku lõpmatult kahanev suurus kui ∆x ja t...

Matemaatika → Matemaatiline analüüs 1
14 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

Sisujuht 16. Esimest liiki katkevuspunkt - niisugust katkevuspunkti, kus funktsioonil f on olemas ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärt...

Matemaatika → Matemaatika
118 allalaadimist
thumbnail
23
docx

MATEMAATILINE ANALÜÜS TÖÖ VASTUSED

1. · Arvtelje mõiste ­ Arvteljeks kutsume sirget, millel on positiivne suund, määratud nullpunkt ja pikkusühik. Arvteljega on võimalik seada vastavusse kõik reaalarvud, kus ühele reaalarvule vastab ainult üks arvtelje punkt. · Reaalarvu absoluutväärtus ­ · Absoluutväärtuse omadused · Reaalarvu lõpmatuseks nimetame suvalist vahemikku (a-,a+), kus >0 on ümbruse raadius · Reaalarvu vasakpoolseks lõpmatuseks nimetame suvalist vahemikku (a-,a], kus >0 · Reaalarvu parempoolseks lõpmatuseks nimetame suvalist vahemikku [a, a+), kus >0 · Suuruse lõpmatus ümbruseks nimetame hulka (M,), kus M>0 · Suuruse miinus lõpmatus ümbruses nimetame hulka (-,-M), kus M>0 · Hulka A nimetame tõkestatud hulgaks, kui A on määratud lõplikus vahemikus (a,b) 2. · Jääv suurus on suurus mille väärtus ei muutu · Muutuv suurus on suurus, millele võib omastada erinevaid väärtuseid ...

Matemaatika → Matemaatika analüüs i
104 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

Funktsioon. Määramispiirkond, väärtuste hulk. Pöördfunktsioon. Seaduspärasust või teisendust, mis igale X elemendile x seab vastavuse ühe hulga Y elemendi y nim. argumendi x funktsiooniks ja kirjutatakse y=f(x) Funktsiooni y=f(x) määramispiirkonnaks on kõigi nende argumendi x väärtuste hulk, mille korral funktsioon omab mõtet ja on lõpliku väärtusega. Funktsiooni väärtuste hulgaks nim. nende väärtuste hulka, mida funktsioon omandab, kui läbib kogu määramispiirkonna. Tingimused, mis peavad olema täidetud elementaarfunktsioonide kaudu esitatud reaalmuutuja funktsioonil: B ( x) 1) A( x) 0 A( x) 2) 2 x A( x) A( x) 0 3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendat...

Matemaatika → Matemaatiline analüüs
179 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

Funktsioon. Määramispiirkond, väärtuste hulk. Pöördfunktsioon. Seaduspärasust või teisendust, mis igale X elemendile x seab vastavuse ühe hulga Y elemendi y nim. argumendi x funktsiooniks ja kirjutatakse y=f(x) Funktsiooni y=f(x) määramispiirkonnaks on kõigi nende argumendi x väärtuste hulk, mille korral funktsioon omab mõtet ja on lõpliku väärtusega. Funktsiooni väärtuste hulgaks nim. nende väärtuste hulka, mida funktsioon omandab, kui läbib kogu määramispiirkonna. Tingimused, mis peavad olema täidetud elementaarfunktsioonide kaudu esitatud reaalmuutuja funktsioonil: B ( x) 1) A( x) 0 A( x) 2) 2 x A( x) A( x) 0 3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendat...

Muu → Matemaatiline analüüs
11 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun