Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Matemaatiline analüüs 1 kordaisküsimuste vastused (1)

4 HEA
Punktid

Esitatud küsimused

  • Kui teame et t1x kuidas lah?
  • Kuidas leida MHE?

Lõik failist

1. Muutuvad suurused.
Def. 1 *Suurusi, mis omand erinevaid
väärtusi(vaadeldavas protsessis) nim muutuvateks suurusteks.
*Suurusi, mis omand. konstantseid püsivaid väärtusi nim jäävateks
suurusteks e. konstantideks. *Tähistus: x,y,z…u,v,w,t *NT ühtlane
liikumine-> kiirus konstantne v, teepikkus ja aeg muutuvad
*Muutuvad suurused on tavaliselt reaalarvud -> geom võime esitada
sirgel *absoluutsed konstandid- mistahes protsessis vaadeldavad
suurused: =3,14…,
e =2,71 1. väärtused on diskreetsed x: x1,x2,x3
( arvjada ) 2. väärtused omand pideva alamhulga reaalteljel
(+joonised!): *X={x
IR|a≤xi≤b}
lõik * X={x
IR|a võime öelda et
funkts esitatud. Funktsioon esit reegli kirj kaudu *Kuidas esitada
funktsioone ?=> * joon määrab funkts, +graafikul nähtavad
paljud funkts om., -funkts´i väärtust saame määrata ligikaudu
3. Eriomadustega funktsioone
1.ühesed ja mitmesed f-d: *Def. y= f(x), mille
MP=X, ühene sel korral, kui igale x väärtusele vastab parajasti üks f-ni y=f(x) väärtus NT:y=x2
(lineaarliige määrab telje sihi) *Def. y=f(x), MP=X, mitmene kui
tekib rohkem kui 1 f-n. leiduvad niisugused x väärtused, mille
Vasakule Paremale
Matemaatiline analüüs 1 kordaisküsimuste vastused #1 Matemaatiline analüüs 1 kordaisküsimuste vastused #2 Matemaatiline analüüs 1 kordaisküsimuste vastused #3 Matemaatiline analüüs 1 kordaisküsimuste vastused #4 Matemaatiline analüüs 1 kordaisküsimuste vastused #5 Matemaatiline analüüs 1 kordaisküsimuste vastused #6 Matemaatiline analüüs 1 kordaisküsimuste vastused #7 Matemaatiline analüüs 1 kordaisküsimuste vastused #8 Matemaatiline analüüs 1 kordaisküsimuste vastused #9 Matemaatiline analüüs 1 kordaisküsimuste vastused #10 Matemaatiline analüüs 1 kordaisküsimuste vastused #11 Matemaatiline analüüs 1 kordaisküsimuste vastused #12 Matemaatiline analüüs 1 kordaisküsimuste vastused #13
Punktid 100 punkti Autor soovib selle materjali allalaadimise eest saada 100 punkti.
Leheküljed ~ 13 lehte Lehekülgede arv dokumendis
Aeg2009-01-23 Kuupäev, millal dokument üles laeti
Allalaadimisi 147 laadimist Kokku alla laetud
Kommentaarid 1 arvamus Teiste kasutajate poolt lisatud kommentaarid
Autor kapu Õppematerjali autor
riivese analüüs 1 teooria

Sarnased õppematerjalid

thumbnail
19
doc

Nimetu

1 ÜHE MUUTUJA FUNKTSIOON. TEMA MÄÄRAMISPIIRKOND DEFINITSIOON 1. Kui muutuja x igale väärtusele hulgast X on mingi eeskirja f abil vastavusse seatud lõplik reaalarv y, siis öeldakse, et hulgal X on määratud FUNKTSIOON ja seda tähistatakse y = f(x). DEFINITSIOON 2. Muutuja x väärtuste hulka, mille puhul f(x) väärtus on lõplik, nimetatakse funktsiooni y = f(x) MÄÄRAMISPIIRKONNAKS. X = { x R; f(x) väärtus on lõplik}. PÕHILISED ELEMENTAARFUNKTSIOONID: 1. Astmefunktsioonid: y = x , Q; 2. Eksponentfunktsioonid: y = ax, a > 0, a 1; 3. Logaritmfunktsioonid: y = loga x, a > 0, a 1; 4. Trigonomeetrilised funktsioonid: y = sin x, y = cos x, y = tan x, y = cot x; 5. Arkusfunktsioonid: y = arcsin x, y = arccos x, y = arctan x, y = arccot x. 2 LIITFUNKTSIOON DEFINITSIOON 1. Funktsiooni, mille argumendiks ei ole sõltumatu muutuja, vaid tema mingi fu

Kategoriseerimata
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

piirkonnas A, kui F `(x) = f(x) iga x A korral. Funktsiooni algfunktsiooni leidmist nimetatakse integreerimiseks. 31. Määramata integraal - avaldist F(x) + c , kus F(x) on funktsiooni f(x) mingi algfunktsioon ja c R on suvaline konstant, nimetatakse funktsiooni f(x) määramata integraaliks. 32. Ratsionaalfunktsioon - ratsionaalfunktsiooniks nimetatakse funktsiooni kujul: y = Fn(x) / Gm(x) kus Fn(x) ja Gm(x) on n ja m järku polünoomid. 33. Polünoom - hulkliige. Lõpliku summa näol esinev matemaatiline avaldis 34. Lihtmurdratsionaalfunktsioon - kui murru lugeja aste (polünoomi järk) on väiksem murru nimetaja astmest ( n < m) , siis nim. seda funktsiooni lihtmurdratsionaalfunktsiooniks. 35. Liigmurdratsionaalfunktsioon - kui murru lugeja aste on suurem murru nimetaja astmest ( n > m ) on tegu liigmurdratsionaalfunktsiooniga. 36. Riemanni integraal - piirväärtust lim , 0 = lim f ( i) x i , 0 ( summa n kuni i = 1) nimetatakse funktsiooni f (x) määratud integraaliks e

Matemaatika
thumbnail
20
docx

Kõrgem matemaatika II eksamimaterjal

Vektorruum Mittetühja hulka V nimetatakse vektorruumiks üle reaalarvude hulga R, kui sellel hulgal on defineeritud lineaarsed tehted: hulga V elementide liitmine ja korrutamine skalaaridega nii, et on täidetud järgmised tingimused: hulk V on kinnine elementide liitmise suhtes ja hulk V on kinnine skalaariga korrutamise suhtes Vektorruumi 1) leidub nullelement omadused 2) iga elemendi a korral leidub tema vastandelement ­a 3) (a+b)+c=a+(b+c) 4) a+b=b+a 5) k(a+b)=ka+kb 6) (k+l)a=ka+la 7) (kl)a=k(la) 8) 1a=a Vektorruumi Vektorruumi alamruumiks nimetatakse vektorruumi V mittetühja alamhulka U, alamruum kui U on vektorruumi V tehete suhtes vektorruum üle reaalarvude hulga R Lineaarkate

Kõrgem matemaatika ii
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x ja dy:= y, nimetatakse funktsiooni f(x,y)

Matemaatiline analüüs 2
thumbnail
1
docx

Diferntsiaalvõrrandidte teooria nr. 2

1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. Kõrgemat jär harilikud dvid: Üldkuju: F(x, y, y', y'', ..., y (n)) = 0 (1), kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y (n-1))(2) (( F(x,y, y')=0 (1) ja y' =f(x;y) (2))) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. ***{y(x0) = y0 {y'(x0) = y0(1) {... {y(n-1)(x0) = y0(n-1) ***Lahendi olemasolu : kõrgemat järku DV lahend ­ funktsioon, mille asendamisel võrrandisse saame samasuse F(x, y(x), y'(x), y''(x), ..., y(n)) 0 x. Peano teoreem e. olemasolu teoreem: olgu funktsioon f pidev muutujate x, y, y', y'', ..., y(n-1) piirkonnas D, siis iga punkt (x0, y0, y0(n-1) ) D korral on Cauchy ülesanne {(1);(2)} vähemalt 1 lahend. Cauchy teoreem e. ühesuse tingimused

Dif.võrrandid
thumbnail
8
doc

Kõrgema matemaatika kordamisküsimused ja vastused

Kõrgem matemaatika 1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks ­ ristkülikukujuline arvudega tabel, milles on m-rida ja n-veergu. Tähistused: (maatriksit tähistatakse suure tähega) a11 a12 ... a1n a 21 a 22 ... a2n i =1,2,..., m = A( aij ), ... ... ... ... j =1,2,..., n a m1 am2 ... a mn Maatriksi järk ­ tähistab maatriksi môôtmeid; A on m*n järku maatriks. Maatriksi liigid: 1) Ruutmaatriks: m=n; 2) Diagonaalmaatriks: a11, a22, amm - peadiagonaal (diagonaalil ei ole 0; muud elemendid 0-d); 3) Ühikmaatriks (diagonaalmaatriksi erijuht): a11 = a22 ... = amm = 1; (Täh. E); 4) Nullmaatriks: aij = 0, iga i ja j korral; (Täh ). 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). 1) Korrutamine arvuga: A=(aij), kR; kA=C; C=(cij), kus cij = kaij. 2) Maatriksite liitmine: (m*n) ­ ma. A, (p*q) ­ m

Matemaatika
thumbnail
8
docx

Dif 2. kollokvium

n Kõrgemat järku harilik DV-Üldkuju(F,x,y,y’,y’’,.., y ),kus x-sõltumatu muutuja,y=y(x) otsitav funkt ja y’.. ' n x , y , y , .. y on otsitava fun tuletised.Lahendiks y=y(x)>y=y(x,C1,C2,..,Cn). Normkuju: y =f ¿ , (n ) y (n−1) ¿(1) . Algtingimused y( x 0 ¿= y 0 ; y( x 0 ¿= y 0 ' ; y n−1 ( x 0 ) = y 0n?

Dif.võrrandid
thumbnail
14
pdf

Matemaatiline analüüs II

Mitmemõõtmelise ruumi mõiste Def: On antud n reaalarvu x1...xn ja nende järjestatud jada (x1...xn)(-punkt) ­ seda nim n- mõõtmelise ruumi punktiks. Rn={(x1,...,xn) | xi R, i=1,...,n}, P(x1,...,xn) ­ punkt koordinaatidega xi n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarv?

Matemaatiline analüüs 2




Kommentaarid (1)

saarlauri profiilipilt
saarlauri: päris hea
13:37 07-03-2010



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun