Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Dif 2. kollokvium (0)

1 Hindamata
Punktid
Vasakule Paremale
Dif 2-kollokvium #1 Dif 2-kollokvium #2 Dif 2-kollokvium #3 Dif 2-kollokvium #4
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 4 lehte Lehekülgede arv dokumendis
Aeg2015-12-18 Kuupäev, millal dokument üles laeti
Allalaadimisi 88 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor basiilio Õppematerjali autor
Diferentsiaalvõrrandite teise kollokviumi kordamisküsimuste vastused

Sarnased õppematerjalid

thumbnail
14
odt

DV II KT vastused

DV II teooriatöö kordamisküsimused 1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. V: Kõrgemat järku harilikud diferentsiaalvõrrandid: Üldkuju: F(x, y, y', y'', ..., y(n)) = 0, kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y(n-1)) (1) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. {y(x0) = y0 {y'(x0) = y0(1) {... (2) (n-1) (n-1)

Dif.võrrandid
thumbnail
1
docx

Diferntsiaalvõrrandidte teooria nr. 2

1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. Kõrgemat jär harilikud dvid: Üldkuju: F(x, y, y', y'', ..., y (n)) = 0 (1), kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y (n-1))(2) (( F(x,y, y')=0 (1) ja y' =f(x;y) (2))) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. ***{y(x0) = y0 {y'(x0) = y0(1) {... {y(n-1)(x0) = y0(n-1) ***Lahendi olemasolu : kõrgemat järku DV lahend ­ funktsioon, mille asendamisel võrrandisse saame samasuse F(x, y(x), y'(x), y''(x), ..., y(n)) 0 x. Peano teoreem e. olemasolu teoreem: olgu funktsioon f pidev muutujate x, y, y', y'', ..., y(n-1) piirkonnas D, siis iga punkt (x0, y0, y0(n-1) ) D korral on Cauchy ülesanne {(1);(2)} vähemalt 1 lahend. Cauchy teoreem e. ühesuse tingimused

Dif.võrrandid
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

1. Muutuvad suurused. Def. 1 *Suurusi, mis omand erinevaid väärtusi(vaadeldavas protsessis) nim muutuvateks suurusteks. *Suurusi, mis omand. konstantseid püsivaid väärtusi nim jäävateks suurusteks e. konstantideks. *Tähistus: x,y,z...u,v,w,t *NT ühtlane liikumine-> kiirus konstantne v, teepikkus ja aeg muutuvad *Muutuvad suurused on tavaliselt reaalarvud-> geom võime esitada sirgel *absoluutsed konstandid- mistahes protsessis vaadeldavad suurused: =3,14..., e =2,71 1. väärtused on diskreetsed x: x1,x2,x3 (arvjada) 2. väärtused omand pideva alamhulga reaalteljel (+joonised!): *X={x IR|axib} lõik * X={x IR|a0 (joonis) 2. Funktsiooni mõiste Olgu antud 2 suurust x-muutumisp. X, y-muutumisp. Y *Def.1 Me nim funktsiooniks kujutust, mis seab igale x väärtusele piirkonnas X vastavusse suuruse y kindl

Kõrgem matemaatika
thumbnail
20
docx

Kõrgem matemaatika II eksamimaterjal

Vektorruum Mittetühja hulka V nimetatakse vektorruumiks üle reaalarvude hulga R, kui sellel hulgal on defineeritud lineaarsed tehted: hulga V elementide liitmine ja korrutamine skalaaridega nii, et on täidetud järgmised tingimused: hulk V on kinnine elementide liitmise suhtes ja hulk V on kinnine skalaariga korrutamise suhtes Vektorruumi 1) leidub nullelement omadused 2) iga elemendi a korral leidub tema vastandelement ­a 3) (a+b)+c=a+(b+c) 4) a+b=b+a 5) k(a+b)=ka+kb 6) (k+l)a=ka+la 7) (kl)a=k(la) 8) 1a=a Vektorruumi Vektorruumi alamruumiks nimetatakse vektorruumi V mittetühja alamhulka U, alamruum kui U on vektorruumi V tehete suhtes vektorruum üle reaalarvude hulga R Lineaarkate

Kõrgem matemaatika ii
thumbnail
8
pdf

Matemaatiline analüüs II 2. kollokviumi spikker

1. Mitmemuutuja funktsiooni lokaalsete ekstreemumite mõisted. Statsionaarne punkt. Kriitiline punkt. piirkonna D rajajoon. Eeldame, et piirkonnas D on täidetud tingimus f(x,y)>=g(x,y). Kahekordse integraali 𝑥 = 𝜌 𝑐𝑜𝑠𝜑 Mitmemuutuja funktsiooni lokaalse ekstreemumi tarvilik tingimus. Definitsioon 1. Öeldakse, et kahe omaduse tõttu ∬𝐷[𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)]𝑑𝑥𝑑𝑦 = ∬𝐷 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 − ∬𝐷 𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦. Mõlemad kahekordsed 𝑦 = 𝜌 𝑠𝑖𝑛𝜑 muutuja funktsioonil on punktis P1(x1, y1) lokaalne maksimum, kui sellel punktil leidub niisugune ümbrus tei

Matemaatiline analüüs 2
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x ja dy:= y, nimetatakse funktsiooni f(x,y)

Matemaatiline analüüs 2
thumbnail
13
pdf

Majandusmatemaatika IIE eksami kordamisküsimused

Majandusmatemaatika TEM0222 konspekt 1. Gaussi meetod e. elimineerimise meetod täpselt määratud süsteemi korral (võrrandite arv=tundmatute arv): maatriksis jäätakse kõik peadiagonaali elemendid 1ks, kõik ülejäänud elemendid muudetakse 0ks. Selleks valitakse igast reast ja veerust ühe korra juhtelement. Ühest reast või veerust mitu korda juhtelementi valida ei saa. Juhtelemendi rida lahutatakse või liidetakse teistele ridadele, et ülejäänud ridadest saada samasse veergu kus juhtelemend asub nullid. N: -1 2 1 1 ! 7 1 3 -1 1 ! 4 1 8 1 1 ! 13 11 11!6 Mittestabiilse süsteemi korral: Kasutusele tuleb Crameri valem. X1=x1(maatriks)/kogumaatriks Crameri valemit ei kasuta ükski arvutiprogramm, sest see võib anda väga suure vea. Gaussi meetodis saab arvutusvigade vähendamiseks valida juhtelemendiks maksimaalse absoluutväärtusega arvu (antud veerus kui ka kogu süsteemis). Gaussi meetodiga saab leida ka pöördmaatriksit. Pöördmaatr

Majandusmatemaatika
thumbnail
14
docx

Diferentsiaalvõrrandite eksami konspekt

1. Diferentsiaalvõrrandi üld- ja erilahend. Väärtus ja raja ülesanne Def 1.1 Võrrandit, milles osalevad sõltumatu muutuja, tundmatu funktsioon ja selle tuletised nim diferentsiaalvõrrandiks. (1.1) F(x, y(), y'(), ...)=0 Kui otsitav funktsioon y sõltub ainult ühest muutujast, siis seda nim harilikuks diferentsiaalvõrrandiks. Kui otsitav funktsioon sõltub mitmest muutujast, siis on tegemist osatuletistega diferentsiaalvõrranditega. Kõrgema järguga tuletis dif.võr määrab ära selle võrrandi järgu. Esimest järku dif võrrand on (1.2) Def 1.2 N-järku dif.võr (1.1) üldlahendiks nim n-parameetrilist lähtuvat funktsioonide parve või peret, mis muudab võrrandi samasuseks sõltumata parameetrite väärtustest. (1.3) Dif.võr lahendamist nim selle võrrandi integreerimiseks ja selle lahendid integraaliks, lahendi graafikut nim integraaljooneks. Kui n-järku võrrandile lisada n-algtingimust: (1.4) Siis saame algväärtuseks ülesande (1.1). esimest järku algväär

Dif.võrrandid




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun