Lineaaralgebra elemendid. M.Latõnina 1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): A = (aij ) = [aij ] = aij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ...
Mat. analüüsi eksami küs. vastused: OSA 1 1. Millisel tingimusel nimetatakse sümbolit x muutujaks mingis hulgas X? Kui sümbol x tähistab hulga X suvalist elementi, siis nimetatakse sümbolit x muutujaks hulgas X 2. Tooge hulkade kohta 2 näidet! y fx () Reaalarvude-, kompleksarvude-, vektorite-, maatriksite-, kaubahalli kauba hulk. 3. Mis on operaator? Tooge 2 näidet! Eeskirja f(f()fx()) , mis näitab kuidas leida muutuja x väärtusele hulgas X vastavat muutuja x hulgas Y, nimetatakse operaatoriks. väärtust f ( x) Näited: aritmeetilised tehted reaalarvudega, aritmeetilised tehted kompleksarvudega,...
docstxt/123749137948977.txt
docstxt/123749131648977.txt
docstxt/123271043625677.txt
r-* tTnqt '-qilg._ ,?r, ' qr"7:'#l E4 j -.1 J^*{t(o0r d b,9-, 0T.oY.oP ,)l & 1,3 /,t/" { [ 6r 0x ' l " Jtr ** tC "/ )r ,qrrdx 0 ,1 =,,. c r d,,( J,f *. ...
docstxt/123270808125677.txt
docstxt/123270791125677.txt
docstxt/123270738625677.txt
docstxt/123270767525677.txt
docstxt/123270727325677.txt
1. Muutuvad suurused.
Def. 1 *Suurusi, mis omand erinevaid väärtusi(vaadeldavas protsessis) nim
muutuvateks suurusteks. *Suurusi, mis omand. konstantseid püsivaid väärtusi
nim jäävateks suurusteks e. konstantideks. *Tähistus: x,y,z...u,v,w,t *NT
ühtlane liikumine-> kiirus konstantne v, teepikkus ja aeg muutuvad *Muutuvad
suurused on tavaliselt reaalarvud-> geom võime esitada sirgel *absoluutsed
konstandid- mistahes protsessis vaadeldavad suurused: =3,14..., e =2,71
1. väärtused on diskreetsed x: x1,x2,x3 (arvjada) 2. väärtused omand pideva
alamhulga reaalteljel (+joonised!): *X={x IR|axib} lõik * X={x IR|a
docstxt/123270630725677.txt
docstxt/123270542425677.txt
1 VEKTORALGEBRA PÕHIMÕISTEID DEFINITSIOON. Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e Vektoreid, mille arvväärtus (pikkus) on null, nimetatakse nullvektoriteks. Kasutatakse tähistust 0. Nullvektori siht ja suund on määramata. VEKTORITE VASTASTIKUSED SEOSED: Vektorid ...
1)Skalaarsed ja vektoriaalsed suurused. Suurusi, mis on täielikult iseloomustatud oma arvväärtusega nimetatakse skalaarideks (skalaarna suurus). Skalaari saab esitada arvteljel. Suurusi, mis on iseloomustatud oma arvväärtuse (suuruse), sihi ja suunaga nimetatakse vektoriteks. (arvväärtuse määrab punktide vaheline kaugus, sihi määrab punktidega antud sirge s(A,B), suund on määratud punktide järjestusega.) Vastandvektor sama suurus ja siht, aga erinev suund. Vabavektor vektori alguspunkt ei ole fikseeritud. Nullvektor pikkus on null, siht ja suund määramata. Ühikvektor . pikkus/arvväärtus on üks. Võrdsed vektorid sama siht suund ja arvväärtus. Kollineaarsed vektorid pärast ühisesse alguspunkti viimist asuvad ühel sirgel. Komplanaarsed vektorite kolmik, pärast ühisesse alguspunkti viimist asuvad ühel tasandil. 2)Lineaarsed tehted vektoritega. (liitmine ja arvuga korrutamine) Vektorite liitmine operatsioon, mis seab kahele ve...
L+l''-. Ir + T Jr4 i- tr il ti I r l T i ^t-. I J I I I I I I l l I I I T 1 4.). il I rl .i ,: -tt f -l -l-liI- -J' rlll ii"lr ( x ot ''S - tt -t-f . t i ' t' l J 5 uctR6.e,t,4"y 4,)' ... Ahi 2 uu.4DLl, ...
MÄÄRATUD INTEGRAAL Pindfunktsioon ja tema tuletis Kõverjooneliseks trapetsiks nimetatakse kujundit, mille kaks külge on teineteisega paralleelsed sirged (paralleelsed näiteks y teljega). Vaatame siin esialgu veel lihtsustust, kus ka kolmas külg on sirge (x telg täpsemalt x telje lõik [a,b], neljas külg funktsiooni y = f ( x ) graafik. Trapetsiga on sarnasus: kahe vastaskülje paralleelsus. y M A X B y = f(x) m P P 0 a x x+x b x Märgime x teljel punkti x ja vaatleme kõverjoonelist trapetsit axXA. Tähistame trapetsi pindala tähega S. Pindala S sõltub x-st, igale kindlale x väärtusele vastab pindala P kindel v...
INTEGRAALARVUTUS MÄÄRAMATA INTEGRAAL Def Funktsiooni f(x) algfunktsiooniks nimetatakse niisugust funktsiooni y = F(x), mille tuletis võrdub funktsiooniga f(x): F ( x ) = f ( x ) . Näide: Funktsiooni y = 2 x algfunktsioon on y = x 2 , sest ( x 2 ) = 2 x . Antud funktsioonil on mitu algfunktsiooni, sest kui F ( x ) = f ( x ) , siis [ F ( x ) + C ] = F ( x ) = f ( x ) , kus C on suvaline konstant. Funktsioonil on lõpmata palju algfunktsioone, mis erinevad üksteisest konstantse liidetava poolest. Funktsiooni y = f ( x ) algfunktsiooniks on kõik funktsioonid y = F ( x ) + C . Teoreem: Antud funktsiooni mistahes kaks algfunktsiooni võivad teineteisest erineda ülimalt konstantse liidetava poolest: Tõestus: Olgu y =F 1 ( x ) ja y =F 2 ( x ) suvalised kaks algfunktsiooni funktsioonile y = f ( x ) . Siis algfunktsiooni definitsiooni kohaselt: F1( x ) = f ( x ) ; F2( x ) = f ( x ) F ( x ) - F ( ...
1. Maatriksi definitsioon 2. Pöördmaatriksi definitsioon a) Maatriks on ristkülikukujuline tabel, mille ridade ja veergude lõikekohtades Ruutmaatriksi A pöördmaatrksiks nimetatakse maatriksit A-1, mis rahuldab asuvad mingi fikseeritud hulga elemendid. Enamasti eeldatakse, et selle hulga võrdusi elemente saab liita ja korrutada. Kõige sagedamini on selleks hulgaks reaal- või AA-1=A-1A-E. kompleksarvude hulk. Üldisemalt võib selleks hulgaks olla suvaline korpus või Pöördmaatriks eksisteerib ainult siis, kui maatriks A on regulaarne (determinant isegi assotsiatiivne ühikelemendiga ring. A ei tohi võrduda 0ga) Maatriksi A=(aij) transporneeritud maatriksiks nimetatakse maatriksit AT=(aij), Kui maatriksis on m rida j...
Kõrgema matemaatika kordamisküsimused eksamiks 1. Kahe vektori skalaar- ja vektorkorrutis Vektoriks nim suunaga ja pikkusega sirglõiku. Tähistatakse , kus A ja B tähistavad vastavalt vektori algus- ja lõpp-punkti. Vektori mooduliks nim vektori pikkust. Tähistatakse . Ühikvektoriks nim vektorit, mille pikkus võrdub ühega. . Nullvektoriks nim vektorit, mille alguspunkt ja lõpppunkt ühtivad. . Vabavektoriks nim vektorit, mille alguspunkt ei ole fikseeritud, st vektori asendit võib paralleellükke abil muuta. Kahte vektorit nim võrdseks, kui nad on võrdsete moodulitega ning samasuunalised. Vektorite võrdsus erineb lõikude võrdsusest. Vektoreid nim kollineaarseteks, kui nad pärast ühisesse alguspunkti viimist asuvad ühel ja samal sirgel. Võivad olla sama või vastassuunalised. . Vektoreid nim komplanaarseteks, kui nad pärast ühisesse alguspunkti viimist asuv...
Mata eksami kordamisküsimused 1. Determenandi põhiomadused. Alam D ja minoor. Crameri meetodil võrrandsüsteemi lahendamine · Determinant ei muutu, kui tema read ja veerud ümber paigutada. See omadus väljendab determinantideridade ja veergude samaväärsust. · Kui determinandis kaks rida omavahel ümber paigutada, siis muutub determinandi märk vastupidiseks. · Determinandi mingi rea kõigi elementide korrutamisel ühe ja sama teguriga korrutub kogu determinant selle teguriga. See omadus võimaldab D-i rea või veeru elementide ühist tegurit D-i märgi ette tuua, mis harilikult lihtsab tunduvalt arvutusi. · Kui D-s on kaks rida omavahel võrdsad, siis D võrdub nulliga. Seega on eelmise omaduse tõttu D võrdne nulliga ka siis kui D-i kaks rida on võrdelised. · Kui D-s mingi rea iga element kujutab kahhe liidetava summa siis laguneb D kahe sama järku D- i summaks, kui es...
Pöördmaat leidm- Ruutmaatriksil A= ||aij|| Rn×nleidub pöördm siis, kui tema detem ei =0 Ruutm nim regulaarseks, kui tema deter ei ole null. Vastasel juhul nim ruutm singulaarseks. Funkt nim eeskirja, mis seab sõltumatu muutuja igale väärtusele vastavusse sõltuva muutuja mingi ühe väärtuse. Argument-sõltumatu muutuja. Funkt väärtus-argumendi väärt järgi leitud sõltuva muutuja vastavad väärt. Paarisfunk-rahuldab tingimust f(x)=f(-x), sümmeetriline y-telje suhtes. Paaritu-f(-x)=-f(x), 0 punkti suhtes sümmeetr. Ühene f-1le värtusele vastavusse seatud 1 väärtus nt y=2x-3. Mitmene-vastavusse seatud mitu väärtust, nt 1, vahemik 1;-1, x-le vastab y! Tuletis-funkt kasvu ja argumendi kasvu suhte piirväärtus arg muudu lähenemisel 0le. Geogr tõlgendus-f graafikule punktis P tõmmatud puutuja tõus. Füüsikaline-diferentsiaal näitab kui pika vahemaa läbib liikuv objekt selle kiirusega aja jooksul;kiirus on muutuv suurus. Diferentsiaal-korrutist f'(x)x ...
1 VEKTORALGEBRA PÕHIMÕISTEID DEFINITSIOON. Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e Vektoreid, mille arvväärtus (pikkus) on null, nimetatakse nullvektoriteks. Kasutatakse tähistust 0. Nullvektori siht ja suund on määramata. VEKTORITE VASTASTIKUSED SEOSED: Vektorid ...
MAATRIKSALGEBRA 1. Maatriksi mõiste ja liigitus Maatriksiks nimetatakse ristkülikukujulist elementide tabelit, mis koosneb m reast ja n veerust. Maatriksi elemente tähistatakse a ik, kus i näitab, millises reas ja k, millises veerus element asub. Maatrikseid tähistatakse suurte tähtedega A, B, C, . . . Maatriksi üldkuju on: a11 a12 ... a1n a 21 a 22 ... a 2 n A= . . . . . a am2 ... a mn m1 Lühemalt on võimalik maatriksit esitada kujul: A = ( aik ) mn. Maatriksi erikujud: 1. Kui m = n, siis nimetatakse maatriksit ruutmaatriksiks. ...
TE.0568 Kõrgema matemaatika põhikursus (4 EAP) 2011/2012 sügis 1. Determinandid: omadused, miinorid, alamdeterminandid. Crameri meetod lineaarvõrrandisüsteemi lahendamiseks. Determinant on lineaaralgebras funktsioon, mis seab igale ruutmaatriksile vastavusse skalaari, ning on üks olulisemaid matemaatilisi konstruktsioone lineaarvõrrandsüsteemi uurimisel. Determinandiks nimetatakse ruutmaatriksiga seotud arvu, mis on arvutatud teatud eeskirja kohaselt. Determinante tähistatakse DA Maatriksi A determinanti tähistatakse tavaliselt , või . Determinant on defineeritud vaid ruutmaatriksile. Determinandi põhiomadused 1. Maatriksi determinandi väärtus ei muutu maatriksi transponeerimisel: det(A) = det(AT). 2. Determinant on null, kui determinandi 1 rida või veerg : 1. koosneb nullidest 2. on võrdne mõne teise...
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Peeter Sikk 121055 IASB 13 Tallinn 2012 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number 10. süsteemis: 121055 Matrikli number 16. Süsteemis: 8-kohaline arv: 2F572B3F 4-muutuja loogikafunktsiooni 1de piirkond: 2, 15, 5, 7, 11, 3 2F572B3F/11=2C8E46D Määramatuspiirkond: 12, 8, 14, 4, 6, 13 (x1...x4) = (2, 3, 5, 7, 11, 15)1 (4, 6, 8, 12, 13, 14)_ 2. Leida MDNK ja MKNK, mis sobiksid matriklinumbrist leitud osaliselt määratud 4- muutuja funktsiooni esitamiseks. X3,X4 00 01 11 10 X1,X2 00 0 0 1 1 01 - 1 1 - 11 - - 1 - 10 - 0 1 0 _...
~ KORGEMA ¨O MATEMAATIKA EKSAMITO ¨ 1. variant1 Perekonnanimi, nimi, kuup¨ aev.......................... 1. Antud 2 LVS laiendatud maatriksit 2 Milline LVS on lahenduv 1 0 15 3 5 1 0 5 3 · esimene 5 0 1 5 0 5 ja 0 1 - 45 0 1 5 · teine 0 0 1 0 0 0 0 0 0 1 · mitte u ...