Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ukraina abi Ukraina kaitse vajab abi. Tee annetus täna! Aita Ukrainat Sulge
Add link

Kategooria kõrgem matemaatika - 29 õppematerjali

Matemaatika >> Kõrgem matemaatika
7
doc

Kõrgem matemaatika

Kahe vektori skalaar- ja vektorkorrutis Vektoriks nim suunaga ja pikkusega sirglõiku. Tähistatakse , kus A ja B tähistavad vastavalt vektori algus- ja lõpp-punkti. Vektori mooduliks nim vektori pikkust. Tähistatakse . Ühikvektoriks nim vektorit, mille pikkus võrdub ühega. . Nullvektoriks nim vektorit, mille alguspunkt ja lõpppunkt ühtivad. . Vabavektoriks nim vektorit, mille alguspunkt ei ole fikseeritud, st vektori asendit võib paralleellükke abil muuta. Kahte vektorit nim võrdseks, kui nad on võrdsete moodulitega ning samasuunalised. Vektorite võrdsus erineb lõikude võrdsusest. Vektoreid nim kollineaarseteks, kui nad pärast ühisesse alguspunkti viimist asuvad ühel ja samal sirgel. Võivad olla sama või vastassuunalised. . Vektoreid nim komplanaarseteks, kui nad pärast ühisesse alguspunkti viimist asuvad ühel ja...

Kõrgem matemaatika - Eesti Maaülikool
462 allalaadimist
7
doc

Matemaatika eksami kordamisküsimused

Determenandi põhiomadused. Alam D ja minoor. Crameri meetodil võrrandsüsteemi lahendamine · Determinant ei muutu, kui tema read ja veerud ümber paigutada. See omadus väljendab determinantideridade ja veergude samaväärsust. · Kui determinandis kaks rida omavahel ümber paigutada, siis muutub determinandi märk vastupidiseks. · Determinandi mingi rea kõigi elementide korrutamisel ühe ja sama teguriga korrutub kogu determinant selle teguriga. See omadus võimaldab D-i rea või veeru elementide ühist tegurit D-i märgi ette tuua, mis harilikult lihtsab tunduvalt arvutusi. · Kui D-s on kaks rida omavahel võrdsad, siis D võrdub nulliga. Seega on eelmise omaduse tõttu D võrdne nulliga ka siis kui D-i kaks rida on võrdelised. · Kui D-s mingi rea iga element kujutab kahhe liidetava summa siis laguneb D kahe sama järku D- i summaks, kui esimeses D-s...

Kõrgem matemaatika - Eesti Maaülikool
121 allalaadimist
8
docx

Diskreetne matemaatika Kodune

Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Peeter Sikk 121055 IASB 13 Tallinn 2012 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number 10. süsteemis: 121055 Matrikli number 16. Süsteemis: 8-kohaline arv: 2F572B3F 4-muutuja loogikafunktsiooni 1de piirkond: 2, 15, 5, 7, 11, 3 2F572B3F/11=2C8E46D Määramatuspiirkond: 12, 8, 14, 4, 6, 13 (x1...x4) = (2, 3, 5, 7, 11, 15)1 (4, 6, 8, 12, 13, 14)_ 2. Leida MDNK ja MKNK, mis sobiksid matriklinumbrist leitud osaliselt määratud 4- muutuja funktsiooni esitamiseks. X3,X4 00 01 11 10 X1,X2 00 0 0 1 1 01 - 1 1 - 11 - - 1 - 10 - 0 1 0 __ (X...

Kõrgem matemaatika - Eesti Maaülikool
133 allalaadimist
28
pdf

Kõrgema matemaatika üldkursus

0568 Kõrgema matemaatika põhikursus (4 EAP) 2011/2012 sügis 1. Determinandid: omadused, miinorid, alamdeterminandid. Crameri meetod lineaarvõrrandisüsteemi lahendamiseks. Determinant on lineaaralgebras funktsioon, mis seab igale ruutmaatriksile vastavusse skalaari, ning on üks olulisemaid matemaatilisi konstruktsioone lineaarvõrrandsüsteemi uurimisel. Determinandiks nimetatakse ruutmaatriksiga seotud arvu, mis on arvutatud teatud eeskirja kohaselt. Determinante tähistatakse DA Maatriksi A determinanti tähistatakse tavaliselt , või . Determinant on defineeritud vaid ruutmaatriksile. Determinandi põhiomadused 1. Maatriksi determinandi väärtus ei muutu maatriksi transponeerimisel: det(A) = det(AT). 2. Determinant on null, kui determinandi 1 rida või veerg : 1. koosneb nullidest 2. on võrdne mõne teise vasta...

Kõrgem matemaatika - Eesti Maaülikool
304 allalaadimist
48
doc

Lineaaralgebra täielik konspekt

M.Latõnina 1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): A = (aij ) = [aij ] = aij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus)...

Kõrgem matemaatika - Eesti Maaülikool
833 allalaadimist
2
doc

1 eksami kordamisküsimused ja vastused

Suurusi, mis on täielikult iseloomustatud oma arvväärtusega nimetatakse skalaarideks (skalaarna suurus). Skalaari saab esitada arvteljel. Suurusi, mis on iseloomustatud oma arvväärtuse (suuruse), sihi ja suunaga nimetatakse vektoriteks. (arvväärtuse määrab punktide vaheline kaugus, sihi määrab punktidega antud sirge s(A,B), suund on määratud punktide järjestusega.) Vastandvektor ­ sama suurus ja siht, aga erinev suund. Vabavektor ­ vektori alguspunkt ei ole fikseeritud. Nullvektor ­ pikkus on null, siht ja suund määramata. Ühikvektor . pikkus/arvväärtus on üks. Võrdsed vektorid ­ sama siht suund ja arvväärtus. Kollineaarsed vektorid ­ pärast ühisesse alguspunkti viimist asuvad ühel sirgel. Komplanaarsed ­ vektorite kolmik, pärast ühisesse alguspunkti viimist asuvad ühel tasandil. 2)Lineaarsed tehted vektoritega. (liitmine ja arvuga korrutamine) Vektorite liitmine ­ operatsioon, mis seab kahele vektorile vastavusse kolmanda...

Kõrgem matemaatika - Eesti Maaülikool
498 allalaadimist
23
doc

Maatriksi algebra

Maatriksi mõiste ja liigitus Maatriksiks nimetatakse ristkülikukujulist elementide tabelit, mis koosneb m reast ja n veerust. Maatriksi elemente tähistatakse a ik, kus i näitab, millises reas ja k, millises veerus element asub. Maatrikseid tähistatakse suurte tähtedega A, B, C, . . . Maatriksi üldkuju on: a11 a12 ... a1n a 21 a 22 ... a 2 n A= . . . . . a am2 ... a mn m1 Lühemalt on võimalik maatriksit esitada kujul: A = ( aik ) mn. Maatriksi erikujud: 1. Kui m = n, siis nimetatakse maatriksit ruutmaatriksiks. Ruutmaa...

Kõrgem matemaatika - Eesti Maaülikool
186 allalaadimist
19
doc

VEKTORALGEBRA PÕHIMÕISTEID

Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e Vektoreid, mille arvväärtus (pikkus) on null, nimetatakse nullvektoriteks. Kasutatakse tähistust 0. Nullvektori siht ja suund on määramata. VEKTORITE VASTASTIKUSED SEOSED: Vektorid a ja b on võrdsed (a = b), kui...

Kõrgem matemaatika - Eesti Maaülikool
49 allalaadimist
28
doc

Matemaatiline analüüs

analüüsi eksami küs. vastused: OSA 1 1. Millisel tingimusel nimetatakse sümbolit x muutujaks mingis hulgas X? Kui sümbol x tähistab hulga X suvalist elementi, siis nimetatakse sümbolit x muutujaks hulgas X 2. Tooge hulkade kohta 2 näidet! y fx () Reaalarvude-, kompleksarvude-, vektorite-, maatriksite-, kaubahalli kauba hulk. 3. Mis on operaator? Tooge 2 näidet! Eeskirja f(f()fx()) , mis näitab kuidas leida muutuja x väärtusele hulgas X vastavat muutuja x hulgas Y, nimetatakse operaatoriks. väärtust f ( x) Näited: aritmeetilised tehted reaalarvudega, aritmeetilised tehted kompleksarvudega, tehted vekto...

Kõrgem matemaatika - Eesti Maaülikool
415 allalaadimist
47
pdf

Lineaaralgebra ja analüütiline geomeetria

Ir + T Jr4 i- tr il ti I r l T i ^t-. I J I I I I I I l l I I I T 1 4.). il I rl .i ,: -tt f -l -l-liI- -J' rlll ii"lr ( x ot ''S - tt -t-f . t i ' t' l J 5 uctR6.e,t,4"y 4,)' ... Ahi 2 uu.4DLl,...

Kõrgem matemaatika - Eesti Maaülikool
314 allalaadimist
11
doc

Määramata integraal

INTEGRAALARVUTUS MÄÄRAMATA INTEGRAAL Def Funktsiooni f(x) algfunktsiooniks nimetatakse niisugust funktsiooni y = F(x), mille tuletis võrdub funktsiooniga f(x): F ( x ) = f ( x ) . Näide: Funktsiooni y = 2 x algfunktsioon on y = x 2 , sest ( x 2 ) = 2 x . Antud funktsioonil on mitu algfunktsiooni, sest kui F ( x ) = f ( x ) , siis [ F ( x ) + C ] = F ( x ) = f ( x ) , kus C on suvaline konstant. Funktsioonil on lõpmata palju algfunktsioone, mis erinevad üksteisest konstantse liidetava poolest. Funktsiooni y = f ( x ) algfunktsiooniks on kõik funktsioonid y = F ( x ) + C . Teoreem: Antud funktsiooni mistahes kaks algfunktsiooni võivad teineteisest erineda ülimalt konstantse liidetava poolest: Tõestus: Olgu y =F 1 ( x ) ja y =F 2 ( x ) suvalised kaks algfunktsiooni funktsioonile y = f ( x ) . Siis algfunktsiooni definitsiooni kohaselt: F1( x ) = f ( x ) ; F2( x ) = f ( x ) F ( x ) - F ( x )...

Kõrgem matemaatika - Eesti Maaülikool
187 allalaadimist
11
doc

Määratud integraal

MÄÄRATUD INTEGRAAL Pindfunktsioon ja tema tuletis Kõverjooneliseks trapetsiks nimetatakse kujundit, mille kaks külge on teineteisega paralleelsed sirged (paralleelsed näiteks y teljega). Vaatame siin esialgu veel lihtsustust, kus ka kolmas külg on sirge (x telg täpsemalt x telje lõik [a,b], neljas külg funktsiooni y = f ( x ) graafik. Trapetsiga on sarnasus: kahe vastaskülje paralleelsus. y M A X B y = f(x) m P P 0 a x x+x b x Märgime x teljel punkti x ja vaatleme kõverjoonelist trapetsit axXA. Tähistame trapetsi pindala tähega S. Pindala S sõltub x-st, igale kindlale x väärtusele vastab pindala P kindel väärtus, seega p...

Kõrgem matemaatika - Eesti Maaülikool
179 allalaadimist
3
doc

Kokkuvõte

Maatriksi definitsioon 2. Pöördmaatriksi definitsioon a) Maatriks on ristkülikukujuline tabel, mille ridade ja veergude lõikekohtades Ruutmaatriksi A pöördmaatrksiks nimetatakse maatriksit A-1, mis rahuldab asuvad mingi fikseeritud hulga elemendid. Enamasti eeldatakse, et selle hulga võrdusi elemente saab liita ja korrutada. Kõige sagedamini on selleks hulgaks reaal- või AA-1=A-1A-E. kompleksarvude hulk. Üldisemalt võib selleks hulgaks olla suvaline korpus või Pöördmaatriks eksisteerib ainult siis, kui maatriks A on regulaarne (determinant isegi assotsiatiivne ühikelemendiga ring. A ei tohi võrduda 0ga) Maatriksi A=(aij) transporneeritud maatriksiks nimetatakse maatriksit AT=(aij), Kui maatriksis on m rida ja...

Kõrgem matemaatika - Eesti Maaülikool
178 allalaadimist
19
doc

Õppematerjal

Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e Vektoreid, mille arvväärtus (pikkus) on null, nimetatakse nullvektoriteks. Kasutatakse tähistust 0. Nullvektori siht ja suund on määramata. VEKTORITE VASTASTIKUSED SEOSED: Vektorid a ja b on võrdsed (a = b), kui...

Kõrgem matemaatika - Eesti Maaülikool
379 allalaadimist
0
rar

Mathcad kt 2 materjale

materjalid...

Kõrgem matemaatika - Eesti Maaülikool
133 allalaadimist
0
rar

Matemaatiline analüüs 2 kontrolltöö 2

üks variant(riives)...

Kõrgem matemaatika - Eesti Maaülikool
147 allalaadimist
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

Muutuvad suurused. Def. 1 *Suurusi, mis omand erinevaid väärtusi(vaadeldavas protsessis) nim muutuvateks suurusteks. *Suurusi, mis omand. konstantseid püsivaid väärtusi nim jäävateks suurusteks e. konstantideks. *Tähistus: x,y,z...u,v,w,t *NT ühtlane liikumine-> kiirus konstantne v, teepikkus ja aeg muutuvad *Muutuvad suurused on tavaliselt reaalarvud-> geom võime esitada sirgel *absoluutsed konstandid- mistahes protsessis vaadeldavad suurused: =3,14..., e =2,71 1. väärtused on diskreetsed x: x1,x2,x3 (arvjada) 2. väärtused omand pideva alamhulga reaalteljel (+joonised!): *X={x IR|axib} lõik * X={x IR|a0 (joonis) 2. Funktsiooni mõiste Olgu antud 2 suurust x-muutumisp. X, y-muutumisp. Y *Def.1 Me nim funktsiooniks kujutust, mis seab igale x väärtusele piirkonnas X vastavusse suuru...

Kõrgem matemaatika - Eesti Maaülikool
146 allalaadimist
0
rar

Analüüs 1 kt 1

2 varianti...

Kõrgem matemaatika - Eesti Maaülikool
177 allalaadimist
0
rar

Matemaatiline analüüs 1 kontrolltöö 2

1 variant...

Kõrgem matemaatika - Eesti Maaülikool
196 allalaadimist
0
rar

Matemaatiline analüüs 1 kontrolltöö 3

2 varianti (integraalid)...

Kõrgem matemaatika - Eesti Maaülikool
175 allalaadimist


Registreeri ja saadame uutele kasutajatele
faili e-mailile TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun