DV II teooriatöö kordamisküsimused 1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. V: Kõrgemat järku harilikud diferentsiaalvõrrandid: Üldkuju: F(x, y, y', y'', ..., y(n)) = 0, kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y(n-1)) (1) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. {y(x0) = y0 {y'(x0) = y0(1) {... (2) (n-1) (n-1)
..pneλx=0. eλx(p0λ(n)+p1 λ(n-1)+...pn)=0. Korrutis saab olla 0 kui üks teguriteks on 0. Et eλx≠0, siis peab sulgavaldis=0. Võrrandit kujul p 0λn+p1λn-1+...pn=0 nim kar võrrandiks. Kui kar väärtused λ 1... λn on reaalsed ja paarikaupa esinevad siis võrrandi Ly=0 lahendid kujul y1=eλ1x, y2=eλ2x,.. yn=eλnx. Konstantsete kordajatega lineaarne mittehomogeenne võrrand Vaatleme konst kordajatega lin DV kujul Ly=f,st p 0 y n +p1 y n−1 +...+pny=f(x) (1).Vastava lin hom võr Ly=0 lahendi leidmiseks on eeskiri olemas mittehom võrrandi lahend. A Olgu võrrandi vabaliige kujul ɑx f(x)= m e ɑx Am(x)= e (a∗x +a 1) n −1 a +...+ m ) Lause:Kui arv ɑ ei ole lin hom võr(1)
1. Muutuvad suurused.
Def. 1 *Suurusi, mis omand erinevaid väärtusi(vaadeldavas protsessis) nim
muutuvateks suurusteks. *Suurusi, mis omand. konstantseid püsivaid väärtusi
nim jäävateks suurusteks e. konstantideks. *Tähistus: x,y,z...u,v,w,t *NT
ühtlane liikumine-> kiirus konstantne v, teepikkus ja aeg muutuvad *Muutuvad
suurused on tavaliselt reaalarvud-> geom võime esitada sirgel *absoluutsed
konstandid- mistahes protsessis vaadeldavad suurused: =3,14..., e =2,71
1. väärtused on diskreetsed x: x1,x2,x3 (arvjada) 2. väärtused omand pideva
alamhulga reaalteljel (+joonised!): *X={x IR|axib} lõik * X={x IR|a
Vektorruum Mittetühja hulka V nimetatakse vektorruumiks üle reaalarvude hulga R, kui sellel hulgal on defineeritud lineaarsed tehted: hulga V elementide liitmine ja korrutamine skalaaridega nii, et on täidetud järgmised tingimused: hulk V on kinnine elementide liitmise suhtes ja hulk V on kinnine skalaariga korrutamise suhtes Vektorruumi 1) leidub nullelement omadused 2) iga elemendi a korral leidub tema vastandelement a 3) (a+b)+c=a+(b+c) 4) a+b=b+a 5) k(a+b)=ka+kb 6) (k+l)a=ka+la 7) (kl)a=k(la) 8) 1a=a Vektorruumi Vektorruumi alamruumiks nimetatakse vektorruumi V mittetühja alamhulka U, alamruum kui U on vektorruumi V tehete suhtes vektorruum üle reaalarvude hulga R Lineaarkate
Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x ja dy:= y, nimetatakse funktsiooni f(x,y)
1. Mitmemuutuja funktsiooni lokaalsete ekstreemumite mõisted. Statsionaarne punkt. Kriitiline punkt. piirkonna D rajajoon. Eeldame, et piirkonnas D on täidetud tingimus f(x,y)>=g(x,y). Kahekordse integraali 𝑥 = 𝜌 𝑐𝑜𝑠𝜑 Mitmemuutuja funktsiooni lokaalse ekstreemumi tarvilik tingimus. Definitsioon 1. Öeldakse, et kahe omaduse tõttu ∬𝐷[𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)]𝑑𝑥𝑑𝑦 = ∬𝐷 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 − ∬𝐷 𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦. Mõlemad kahekordsed 𝑦 = 𝜌 𝑠𝑖𝑛𝜑 muutuja funktsioonil on punktis P1(x1, y1) lokaalne maksimum, kui sellel punktil leidub niisugune ümbrus tei
1.Diferentsiaalvõrrandi mõiste DV nim võrrandit, mis seob sõltumatut muutujat x, otsitavat funktsiooni y=f(x) ja selle tuletisi y', y'',...yn HDV üldkuju: F(x,y,y')=0 ; x-sõltumatu muutuja, y=y(x) otsitav f ja y'=dy/dx otsitava f-i tuletis. Esimest järku HDV normaalkuju: y'=f(x.y) (edasi sama mis üldkujul). Esimest järku HDV sümmeetriline kuju: M(x,y)dx + N(x,y)dy=0. Cauchy ülesanne: {y'=f(x,y) {y(Xo)=Yo * esimest järku HDV jaoks f(x,y) on pidev piirkonnas D=> eksisteerib (Xo; Yo). Kui y=y(x) on teada, siis y'(x) = f(x, y(x)) iga xD korral ; y'(Xo)=f(Xo,y(Xo)) ; y'(Xo)=f(Xo,Yo) ; tan=y'(Xo)=f(Xo;Yo) 2.I järku DV lahend: DV lahend on funktsioon, mille asetamisel võrrandisse same samasuse sõltumatute muutujate suhtes. *Esimest järku DV üldlahendiks nim f-i: y(Xo)=Yo. Lahendi olemasolu ja ühesus: Cauchy teoreem: Olgu f(x;y) pidev piirkonnas D ning olgu tal selles piirkonnas olemas pidev osatuletis f(x,y)/y. Siis läbi iga punkti (Xo;Yo)D kulgeb parajasti üks DV integ
võrduksid 0ndas reas 0ga. Järgnevalt tuleb ülesanne lahendada nagu tavaline simpleksmeetod, kuni optimaalsuse kriteerium on täidetud ning kunstlikud muutujad on võrdsed 0ga. Kui valitud M korral mõni yi*0, siis a) M pole piisavalt suur või b) kuitahes suure M korral, kitsendused on vastuolulised à lahend puudub. Ülesande võib alati lahendada üldkujul, andmata M-le väärtust. Kui kõik juhtveeru elemendid on 0, siis zmin=-lõpmatus. 12. Simpleksmeetodi teooria (kidunud baas, teoreem baasist, geomeetriline tõlgendus) Kidunud baas: Kui mõni baasi muutuja võrdub 0ga, siis võib sihifuntsiooni väärtus mitte kasvada (mitmel sammul) ja võime jõuda tagasi olnud baasi juurde. Tekib lõpmatu tsükkel, seega lahend puudub. Teoreem baasist: Kui LP ülesandel on tõkestatud optimaalne lahend, siis eksisteerib optimaalne baasilahend. Seda pole vaja tõestada, sest meil on kirjeldatud alati töötav konstruktsioon optimaalse baasilahendi leidmiseks.
Kõik kommentaarid