Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsio
58. K~overjoone kaare pikkus Kirjandus 1. N. S. Piskunov, Diferentsiaal- ja integraalarvutus, I, II, Tallinn 1983. 2. A. L~ohmus, I. Petersen, H. Roos, K~orgema matemaatika u ¨lesannete kogu. Tallinn, 1982. 3. L. Pallas, M¨aa¨ramata integraal. Tallinn, 2005 4. I. Tammeraid, Matemaatiline anal¨ uu¨s I. Tallinn, 2001. 3 5. G. N. Berman, Matemaatilise anal¨ uu¨si kursuse u ¨lesannete kogu. Moskva, 1977 (vene keeles). N¨adalas toimub 2 tundi loenguid ja 2 tundi harjutusi. Loengus esitatakse uus materjal, mida harjutustunnis kinnistatakse u ¨lesannete lahendamisega. Loengumaterjalid on internetis kodulehek¨ uljel www.staff.ttu/lpallas Semester l~opeb suulise eksamiga. Eksamipiletis on kaks teooriak¨ usimust ja kaks u
TÕESTUSED, TULETUSKÄIGUD, PÕHJENDUSED!!! 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y = f'(a)x + , kus = r(x)x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f'(a)x ja teine on . M~olemad liidetavad on l~opmatult kahanevad protsessis x 0. V~ordleme neid suurusi x suhtes. Esiteks, eelduse f'(a) 0 p~ohjal saame lim dy x= lim f'(a)/x* x= lim f'(a) = f(a) 0. x0 x0 x0 Teiseks kehtib lim / x = lim r(x)x /x = lim r(x) = 0. x0 x0 x0 N¨aeme, et esimene liidetav, so diferentsiaal dy on sama j¨arku l~opmatult kahanev suurus kui x ja teine liidetav on k~orgemat j¨arku l~opmatult kahanev suurus x suhtes. J¨arelikult v¨aikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seet~ottu v~oime lugeda diferentsiaali dy funkt- siooni muudu peaos
5 M¨ a¨ aratud integraal 5.1 M¨ a¨ aratud integraali mo ~iste Olgu funktsioon y = f (x) m¨a¨aratud l~oigul [a; b]. Jaotame l~oigu [a; b] suvalisel viisil punktidega x1 , x2 , ... xn-1 n osal~oiguks, kusjuures a = x0 < x1 < x2 < . . . < xk-1 < xk < . . . < xn = b. Tekkinud osal~oigud on [xk-1 ; xk ], kus k = 1, 2, . . . , n. T¨ahistagu xk = xk - xk-1 k-nda osal~oigu pikkust. Edasi valime igalt osal~oigult t¨aiesti suvalise punkti k [xk-1 ; xk ], k = 1, 2, . . . , n, ja moodustame korrutised f (k )xk . Liites need korrutised, saame summa n sn = f (k )xk , k=1 mida nimetatakse funktsiooni f (x) integraalsummaks l~oigul [a; b]. Jaotuspunktid x1 , x2 , . . . on suvalised. Seeaga on osal~oikude pikkused
Samuti on tunduvalt mahukam n¨aite¨ ulesannete hulk. ¨ Uhtses kontekstis on lisatud ka keskkoolis-g¨ umnaasiumis matemaatilisest anal¨ uu¨sist esi- ~ tatu. Oppevahend pakub t¨ aiendavaid v~oimalusi u ¨li~opilaste iseseisvaks t¨o¨oks. T~oestuseta esitatud oluliste v¨ aidete korral on antud viide ~opikule, millest huviline v~oib leida kor- rektse t~ oestuse. ~ Oppevahendi eesm¨ argiks on tutvustada lugejat matemaatilise anal¨ uu ¨si p~ohit~odedega u ¨he muutuja funktsiooni korral. Matemaatiline anal¨ uu¨s on matemaatika osa, milles funktsioone ja nende u ¨ldistusi uuritakse piirv¨a¨artuste meetodil. Piirv¨a¨artuse m~oiste on tihedalt seotud l~ opmata v¨ aikese suuruse m~oistega. V~oib ka v¨aita, et matemaatiline
1. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| =a kui a 0; -a kui a < 0. Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a||b| 3. |a + b| |a| + |b| 4. |a - b| ||a| - |b|| Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - ,a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-,a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Tõkestatud hulgad. Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (a,b) nii, et A (a,b). 2. Jäävad ja muutuvad suurused. Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suu
Matemaatiline anal¨ uu¨ s II 1. osa 1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. Mitmem~ o~ otmelise ruumi definitsioon. Hulka, mille elementideks on k~oik m reaalarvust koosnevad j¨arjestatud s¨ usteemid (a1 , a2 , . . . , am ), nimetatakse m- m~o~ otmeliseks ruumiks, s¨ usteemi A = (a1 , a2 , . . . , am ) selle ruumi punktiks ja arve a1 , a2 , . . . , am punkti A koordinaatideks. m-m~ o~ otmelist ruumi t¨ahistame umboliga Rm . s¨ Ruumi Rm punkte A = (a1 , a2 , . . . , am ) ja B = (b1 , b2 , . . . , bm ) nimetatakse v~ ordseteks ja kirjutatakse A = B, kui nende koordinaadid on v~ordsed, st a1 = b1 , a2 = b2 , . . . , am = bm . Nullpunktiks ehk koordinaatide alguspunktiks ruumis Rm nimetatakse punkti O = (0, 0, . . . , 0). Kaugus ruumis Rm . Olgu ruumis Rm antud kaks punkti A = (a1 , a2 ,
Kirjandus Tammeraid I. Matemaatiline analu¨ us ¨ kirjastus, 2003. ¨ I. Tallinn, TTU Piskunov N. S. Diferentsiaal- ja integraalarvutus I. Tallinn, Valgus, 1981. Kangro G. Matemaatiline analu¨ us ¨ I. Tallinn, Valgus, 1978. ~ Lohmus ~ A., Petersen I., Roos H. Korgema matemaatika ulesannete ¨ kogu. Tallinn, Valgus, 1982. Reimers E. Matemaatilise analu¨ usi ¨ praktikum I. Tallinn, Valgus, 1988. ~ T., Tuutmaa V. Matemaatiline analu¨ us Ruustal E., Jogi ¨ I. ¨ Harjutused. Tallinn, TTU kirjastus, 1999. ¨ G. Tamberg (TTU) YMM3731 Matemaatilne analu¨ us ¨ I 6 / 25 Reaalarvud
Kõik kommentaarid