Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ukraina abi Ukraina kaitse vajab abi. Tee annetus täna! Aita Ukrainat Sulge
Add link

Kategooria matemaatiline analüüs - 76 õppematerjali

Matemaatika >> Matemaatiline analüüs
0
rar

Matemaatiline analüüs

matemaatiline analüüs II ülesanded...

Matemaatiline analüüs - Tallinna Tehnikaülikool
97 allalaadimist
1
doc

Matemaatiline analüüs 1 teooria

Trapetsvalem. n sn = f (k ) xn [a; b] (joon) b-a jagame n osalõiguks h=b-a/n. Siis xo=a; x1=a+h; x2=a+kh;...; xn=b (=a+nh) juhul k =1 kui h0n (joon) k-nda trapetsi pindala: [(xk-1)+(xk)]/2h jne. Pindala saab kui kõikidest väikestest pindaladest võtta b b -a integraal rajades a-b ja valem on siis: f ( x)dx a 2n ( y0 + 2 y1 + 2 y2 + ... + 2 yn -1 + yn ) Pindala arvutamine ristkoordinaatides b [a;b] (joon) y=(x); y=g(x) ja (x)g(x) ning S = [ f ( x) - g ( x) ]dx Kui aga joon on antud parameetrilisel kujul:...

Matemaatiline analüüs - Tallinna Tehnikaülikool
259 allalaadimist
2
doc

Matemaatiline analüüs

Mitme muutuja funktsiooni mõiste Def: Kui igale x-I ja y-I väärtuste paarile mingis piirk D on vastavusse seatud muutuja z teatud kindel väärtus, siis öeldakse et z on kahe muutuja y ja x funktsioon. z=(x; y) või z=z(x; y) või z=(x; y) või z=F(x; y). (joon) D-x, y tasandi punktide hulk; - piirk D rajajoon e raja. Def1: Piirk D nim lahtiseks kui ta ei sisalda ühtegi oma rajajoone punkti; Def2: Piirk D nim kinniseks kui ta sisaldab kõiki oma rajajoone punkte. Näiteks on kaks hulka: A={(x; y)x2+y2

Matemaatiline analüüs - Tallinna Tehnikaülikool
257 allalaadimist
4
doc

Matemaatiline analüüs

Muutuja vahetus kahekordses integraalis x = x(u; v) f ( x, y )dxdy 1)need on ühesed; 2)võrrandisüst. On üheselt avaldatav u ja v suhtes; 3)f-nid y = y(u; v) D peavad olema pidevad; 4)peavad olema pidevad osatuletised mõlema muutuja järgi. (joon) f ( x; y ) = f [ x (u; v ); y (u; v )] = F (u; v ) * f ( x; y ) dxdy = F (u; v) J dudv D xu xv J = Jacobi determinant e jakobiaan. yu yv Kahekordne integraal polaarkoordinaatides x = cos f ( x; y )dxdy = f ( cos; sin ) dd...

Matemaatiline analüüs - Tallinna Tehnikaülikool
340 allalaadimist
2
doc

Matemaatiline analüüs

* Punktis a nimetatakse diferentseeruva f'ni f(x) statsionaarseks punktiks, kui f'(a)=0 * Punktis a nimetatakse f'ni f(x) kriitiliseks punktiks, kui a on statsionaarne punkt või punktis a puudub sel funktsioonil tuletis * Kui punkt a on f'ni f(x) statsionaarne punkt ja f''(x) on pidev punktis a ning f''(a)0, siis f'il f(x) on punktis a range lok ekstreemum, kusjuures f''(a)>0 korral on punktis a range lok miinimum ja f''(a)<0 korral on punktis a range lok maksimum * Kui f'ni f(x) korral f'(a)=...=f(m)(a)=0 ja f(m+1)(a)0 ning f(m+1)(x) on pidev punkis a siis 1. Juhul kui m on paaritu, siis on f'il f punktis a range lok ekstreemum, kusjuures f(m+1)(a)>0 korral on punktis a range lok miinimum ja f(m+1)(a)<0 korral on punktis a range lok maksimum.2. Juhul kui m on paarisarv, siis ei ole f'il f punktis a lok ekstreemumi. * Eeldame, et f f(x) on pidev lõigul [a-,a+] ning diferentseeruv vahemikel (a-,a) ja (a,a-) suvalise >0 korral. 1. Kui f'(...

Matemaatiline analüüs - Tallinna Tehnikaülikool
114 allalaadimist
4
doc

Matemaatiline analüüs - teooria spikker

Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame punkti i =[xi-1,x...

Matemaatiline analüüs - Tallinna Tehnikaülikool
959 allalaadimist
10
docx

Matemaatiline analüüs I

Sõnastada ja tõestada piirväärtusteoreem kahe funktsiooni summa piirväärtuse arvutamiseks protsessis x +. Teoreem (1): Kahe, kolme, üldiselt lõpliku hulga muutuvate suuruste algebralise summa piirväärtus võrdub nende muutuvate suuruste piirväärtuste algebralise summaga. lim(u1 + u2 +....) = lim u1 + lim u2 + ... Tõestus: Tõestan teoreemi kahe funktsiooni liitmise korral. Olgu lim f(x) = A ja lim g(x) = B (Vaatlen mõlemaid protsesse piirprotsessis x +) Teoreem (1) põhjal võib kirjutada lim x + f(x) + g(x) = lim x + f(x) + lim x + g(x) Eeldame, et liidetavaid on lõplik arv. Tugineb lvs omadusele. Lvs (lõpmata väike suurus) omadus: lim(x+) f(x) = A, kui iga > 0 korral leidub selline arv N, et iga x > N korral on...

Matemaatiline analüüs - Tallinna Tehnikaülikool
346 allalaadimist
10
doc

Matemaatiline analüüs I konspekt - funktsioon

"Matemaatiline analüüs I" Funktsioon Funktsioon- Kui muutja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Sõltumatu muutuja on x, sõltuv y Funktsiooni määramispiirkond-Funktsiooni y määramispiirkonnaks nimetakse argumendi x muutumispiirkonda. Funktsioonide liigid- 1. Paaris funktsioon-rahuldab tingimust f(x)=f(-x) ja see on sümmeetriline y-telje suhtes. (Nt:y=x2) 2.Paaritu funktsioon-rahuldab tingimust f(-x)=-f(x) ja see on sümmetrialine 0 punkti suhtes. (y=sinx) 3.Perioodilised funktsioonid- rahuldab tingimust f(x+T)=f(x), T on periood. 4.Ilmutatud funktsioon- funktsioon, kus esitatava võrdsuse vasakul pool on ainult sõltuv muutuja y ja paremal muutujast x sõltuv avaldis. 5. Ilmutamata funktsioon- funktsioon, mille väärtused leitakse x ja y siduvast võrrandist. 6.Ühesed funktsioonid- nimetakse sellist fuktsooni, kus argumendi ühele väärtusele on seatud vastavusse ainult ü...

Matemaatiline analüüs - Tallinna Tehnikaülikool
251 allalaadimist
9
doc

Matemaatiline analüüs - konspekt I

Funktsioon: Funktsiooni mõiste. Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Funktsioone tähistatakse tavaliselt tähtedega f; g; u; v; ; jne. Olgu antud funktsioon f mille argumendiks on x ja s~oltuvaks muutujaks y. Muutuja y väärtust milleks funktsioon f kujutab argumendi x nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega, me võime kirjutada seose y = f(x) ; (1.1) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Mõnikord kasutatakse funktsiooni ja sõltuva muutuja tähistamiseks ühte ja sama sümbolit. Sellisel juhul seos (1.1) omab kuju y = y(x). Argumendi x muut...

Matemaatiline analüüs - Tallinna Tehnikaülikool
591 allalaadimist
11
doc

Matemaatiline analüüs - konspekt II

Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II. Olgu f ` (x1) = 0. Kui f ` '(x1) < 0 siis...

Matemaatiline analüüs - Tallinna Tehnikaülikool
347 allalaadimist
10
doc

Matemaatiline analüüs II

Kahemuutuja funktsiooni integraalsumma mõiste ja geomeetriline sisu. · Olgu D kinnine tõkestatud piirkond ruumis R2. Olgu z = (x,y) piirkonnas D määratud pidev funktsioon. Jaotame piirkonna D n tükiks S1,S2,...,Sn.Tähistagu Si samaaegselt nii i-ndat tükki kui ka i-nda tüki pindala.Valime igalt tükilt ühe punkti P ja moodustame järgmise summa: Vn= (P1) S1 + (P2) S2+...+ (Pn) Sn Seda summat Vn nim funktsiooni integraalsummaks piirkonnas D · Olgu (x,y) 0. siis saab integraalsummas olevat korrutist (P i) Si tõlgendada kui silindri ruumala, mille põhi on S i ja kõrgus (Pi) Selline silinder tähistatakse Zi-ga. IntegraalsummaVn on järelikult silindrite ühendi Z=Z1 U Z2 U...U Zn ruumala. Silindrite ühend Z on treppkeha, mille ülemine pind on tükiti tasapinnalineomades hüppeid erinevate kõrgustega naaber silindrite liitekohtades. 2. Kahekordse inte...

Matemaatiline analüüs - Tallinna Tehnikaülikool
521 allalaadimist
8
docx

Matemaatiline analüüs KT2

Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f (a)0. Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Näeme, et esimene liidetav, so diferentsiaal dy on sama järku lõpmatult kahanev suurus kui x ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus x suhtes. Järelikult väikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seetõttu võime lugeda diferentsiaali dy funktsiooni muudu peaosaks. Jääkliikme võib väikese x korral funktsiooni muudu avaldises ära jätta. Kehtib ligikaudne valem y dy kui x 0 . 21. FUNKTSIOONI LOKAALSETE EKSTREEMUMITE DEFINITSIOONID. Sõna...

Matemaatiline analüüs - Tallinna Tehnikaülikool
229 allalaadimist
16
doc

Matemaatiline analüüs

Esimese kontrolltöö materjal hõlmab lõike 1 ­ 22 ja teise kontrolltöö materjal hõlmab lõike 23 - 45. Igas kontrolltöös on 5 küsimust. Üks küsimus viiest on valitud jämedas kirjas (bold face) olevate teemade hulgast. Vähemalt kaks küsimust viiest sisaldavad tõestusi, tuletuskäike või põhjendusi. Programm järgib otseselt õppejõu konspekti. Kontrolltöödes ei küsita konspektis esitatud näiteid ja väikeses kirjas olevaid osi. 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. V: Arvtelje mõiste: arvteljeks nim. sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Reaalarvu absoluutväärtus: reaalarvu a absoluutväärtuseks nim. järgmist mittenegatiivset reaalarvu. Reaalarvu a absoluutväärtust a võib tõlgendada kui punkti a ja nullpunkti vah...

Matemaatiline analüüs - Tallinna Tehnikaülikool
229 allalaadimist
3
doc

Matemaatiline analüüs 1

Reaalarvu a absoluutväärtuseks nim mittenegatiivset reaalarvu IaI, mis on defin seosega IaI=a, kui a0,,-a, kui a0 Arvu a ümbruseks, kus > 0, nimetatakse hulka U(a)={xIa-x} Reaalarvu a parempoolseks ümbruseks, kus > 0, nimetatakse hulka [a; a + ) = {xIax+a} Suuruse + M-ümbruseks, kus M > 0, nimetatakse vahemikku (M;+). Kui M > 0, siis M-ümbruseks nim ühendit (-;-M) ja(M) Muutuvat suurust nimetatakse tõkestatuks, kui leidub niisugune konstant M0, et kõik muutuva suuruse väärtused, alates mingist x M väärtusest, täidavad tingimust - M x M , s.t. . FUNKTSIOON:. . Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Esitusviisid: Tabel, Analüütilisel kujul esitatud funktsiooni määramispiirkonnaks nimetatakse argumendi kõigi väärtuste hulka, mille korral see valem on määratud.; F.gaafikuks nim punktihulk...

Matemaatiline analüüs - Tallinna Tehnikaülikool
119 allalaadimist
9
doc

Matemaatiline analüüs I

+ Hulk koosneb elementidest, kusjuures elemendid ei kordu ja nende järjestus ei ole kindlaks määratus. Tähistamine suure tähtega, aga elemendid väike tähtega. + Järjestetud hulk koosneb samuti elementidest, kuid selles hulgas on iga kahe elemendi kohta on võimalik öelda, kumb neist on eelnev, kumb järgnev. + arvuhulgad ? + Tõkestatud hulgad on näiteks kõik lõplikud vahemikud (a; b), lõigud [a; b] ja poollõigud [a; b), (a; b]. + Tõkestamata hulgad on aga näiteks lõpmatud vahemikud (-;a), (a; ) ja lõpmatu poollõigud (-; a], [a; ) 2. + Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a-; a+), kus >0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-; a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui . + Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja p...

Matemaatiline analüüs - Tallinna Tehnikaülikool
106 allalaadimist
2
docx

Matemaatiline analüüs teoreemid

TEOORIA 22. INTEGRAALI KESKVÄÄRTUSTEOREEM Omadus 5 Kui funktsioon f ( x) on lõigul [ a , b] pidev, siis leidub sellel lõigul niisugune punkt , et kehtib võrdus b f (x )dx = a )f ( (b - ) a . (5) TÕESTUS f ( x) Vaatleme juhtu a < b . Kui m ja M on vastavalt funktsiooni vähimaks ja suurimaks väärtuseks löigul [ a , b] , siis valemi (4) kohaselt 1 b m f (x )dx M...

Matemaatiline analüüs - Tallinna Tehnikaülikool
156 allalaadimist
37
docx

Matemaatiline analüüs l.

Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suv...

Matemaatiline analüüs - Tallinna Tehnikaülikool
477 allalaadimist
0
zip

Matemaatiline analüüs 2. KT

Gert Tambergi 2. kontrolltöö(integraal) erinevate variantide ülesanded koos põhjaliku lahendusega. Sisaldab kuute erinevat varianti...

Matemaatiline analüüs - Tallinna Tehnikaülikool
347 allalaadimist
1
doc

Matemaatiline analüüs 1 (2 teooria töö)

Kui l~oigul [a; b] pideval ja rangelt monotoonsel funktsioonil y =f(x) leidub kohal a nullist erinev tuletis, siis pöördfunktsioonil x = g(y) leidub tuletis kohal b = f(a), kusjuures g '(b)=1/f ' (a) Param kujul f tuletis: kui f y=f(x) on antud parameetrilisel kujul x(t)=(t); y(t)=(t) , t=[a,b], kusjuures f-id (t) ja (t) on diferentseeruvad vahemikus (a,b) ja (t) on rangelt monotoonne lõigul[a,b] ning (t)0 (t=(a,b), siis y '=(t)/(t) F f(x) n-järku tuletiseks nim f-i f(x) (n-1)-järku tuletise tuletits, st fn(x)=(fn-1(x)) ' F-i y=f(x) n-järku diferentsiaaliks nim diferentsiaali selle f-i n-1 järku diferentsiaalist dny=d(dn-1y) Funktsiooni y = f(x) nimetatakse rangelt kasvavaks punktis x, kui leidub selline positiivne arv , et suvaliste x1 (x-,x) ja x2 (x; x + ) korral f(x1) < f(x) < f(x2). Kui funktsioon on rangelt kasvav punktis x, siis leidub selline 0, et 0|x| --y/x0 Funkts...

Matemaatiline analüüs - Tallinna Tehnikaülikool
258 allalaadimist
6
docx

Matemaatiline analüüs I KT konspekt vähendatud programm

Muutuva suuruse piirväärtuse definitsioon - Olgu x järjestatud muutuv suurus. Arvu a nimetatakse muutuva suuruse x piirväärtuseks, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad arvu a ümbrusesse (a - , a + ), st rahuldavad võrratust |x - a| < . Kui arv a on suuruse x piirväärtus, siis öeldakse, et suurus x läheneb arvule a ehk koondub arvuks a ja kirjutatakse x a või lim x = a . Muutuva suuruse ühepoolsete piirprotsesside definitsioonid ­ · Muutuv suurus x läheneb vasakult arvule a, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad poollõiku (a - , a]. Sellisel juhul kirjutatakse x a-. · Muutuv suurus x läheneb paremalt arvule a, kui iga kuitahes väikese posi...

Matemaatiline analüüs - Tallinna Tehnikaülikool
139 allalaadimist


Registreeri ja saadame uutele kasutajatele
faili e-mailile TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun