30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33. Funktsioonide ex , sin x ja cos x arendid Maclaurini valemi j¨argi 34. Funktsiooni kasvamine ja kahanemine 35. Funktsiooni lokaalsed ekstreemumid 36. Funktsiooni suurim ja v¨ahim v¨a¨artus antud l~oigul 37. Funktsiooni graafiku kumerus ja n~ogusus. K¨aa¨nupunktid 38. Funktsiooni graafiku as¨ umptoodid 39. Algfunktsioon ja m¨aa¨ramata integraal 40. Integraalide tabel 2 41. M¨aa¨ramata integraali omadusi 42. Integreerimine muutuja vahetusega 43. Ositi integreerimine 44. Osamurrud ja nende integreerimine 45. Ratsionaalse murru lahutamine osamurdudeks 46. M~onede trigonomeetriliste funktsioonide klasside integreerimine 47. Irratsionaalavaldiste integreerimine 48. M¨aa¨ratud integraali m~oiste 49. M¨aa¨ratud integraali omadused 50. M¨aa¨ratud integraali arvutamine
. . . 88 4.3 Funktsiooni suurima ja v¨ahima v¨a¨artuse leidmine l~oigul. . . . . . 92 4.4 Joone kumerus, n~ogusus ja k¨a¨anupunktid. . . . . . . . . . . . . . 92 4.5 Joone as¨ umptoodid. . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 Integraalid 103 5.1 Algfunktsioon ja m¨a¨aramata integraal. . . . . . . . . . . . . . . . 103 5.2 Integraalide tabel. M¨a¨aramata integraali omadused. . . . . . . . 104 5.3 Asendusv~ote ja ositi integreerimine m¨a¨aramata integraali aval- damisel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Ratsionaalfunktsioonide integreerimine. Ratsionaalfunktsiooni in- tegraalile taanduvad integraalid. . . . . . . . . . . . . . . . . . . 111 5
. . . 88 4.3 Funktsiooni suurima ja v¨ahima v¨a¨artuse leidmine l~oigul. . . . . . 92 4.4 Joone kumerus, n~ogusus ja k¨a¨anupunktid. . . . . . . . . . . . . . 92 4.5 Joone as¨ umptoodid. . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 Integraalid 103 5.1 Algfunktsioon ja m¨a¨aramata integraal. . . . . . . . . . . . . . . . 103 5.2 Integraalide tabel. M¨a¨aramata integraali omadused. . . . . . . . 104 5.3 Asendusv~ote ja ositi integreerimine m¨a¨aramata integraali aval- damisel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Ratsionaalfunktsioonide integreerimine. Ratsionaalfunktsiooni in- tegraalile taanduvad integraalid. . . . . . . . . . . . . . . . . . . 111 5
F +C. Arvutame G ja F vahe tuletise. Kuna G ja F on u¨he ja sama funktsiooni f algfunktsioonid hulgas D, siis saame (G(x) - F(x))' = G'(x) F'(x) = f(x) - f(x) = 0 iga x D korral. Nulltuletist omab aga ainult konstantne funktsioon. Seega G - F = C, kus C on mingi konstant. Viimasest v~ordusest saame seose G = F +C, mis n¨aitab, et G ikkagi avaldub kujul F + C. J~oudsime vastuolule. Teoreem on t~oestatud. Funktsiooni määramata integraal ja selle geomeetriline sisu. Funktsiooni f algfunktsioonide u¨ldavaldist F(x)+C, kus C on konstant, nimetatakse funktsiooni f m¨a¨aramata integraaliks ja t¨ahistatakse f(x)dx. Seega definitsiooni kohaselt f(x)dx = F(x) + C , C - konstant Algfunktsiooni leidmist nimetatakse integreerimiseks. Kujutades seda funktsioonideparve graafiliselt tasandil xy-koordinaadistikus saame joonteparve, mille jooned on u¨ksteisest tuletatavad y-telje sihilise paralleellu¨kke abil 34. Integraalide tabel. 1
Taylori valem. Taylori valemi ja¨ akliige. ¨ Joone puutuja ja normaal. Funktsiooni lokaalne ekstreemum. ~ Joone kumerus ja nogusus. Ka¨ anupunktid. ¨ Funktsiooni uurimine. Iteratsioonimeetod. ¨ G. Tamberg (TTU) YMM3731 Matemaatilne analu¨ us ¨ I 4 / 25 Integraalarvutus Ma¨ aramata ¨ integraal ja selle omadused. Ma¨ aramata ¨ integraalide tabel. Muutujate vahetus ma¨ aramata ¨ integraalis. Ositi integreerimine ma¨ aramata ¨ integraalis. Hulkliikme teguriteks lahutamine. Ratsionaalfunktsiooni osamurdudeks lahutamine. Lihtsamate osamurdude integreerimine. Trigonomeetriliste ja huperboolsete
TTU¨ Matemaatikainstituut http://www.staff.ttu.ee/math/ Ivar Tammeraid http://www.staff.ttu.ee/itammeraid/ ¨ US MATEMAATILINE ANALU ¨ I Elektrooniline ~oppevahend Tallinn, 2001 Tr¨ ukitud versioon: Ivar Tammeraid, Matemaatiline anal¨ uu ¨ Kirjastus, ¨s I, TTU Tallinn 2001, 227 lk, ISBN 9985-59-289-1 ¨ Raamatukogu Viitenumber http://www.lib.ttu.ee TTU ~opikute osakonnas 517/T-15 c Ivar Tammeraid, 2001 Sisukord 0.1. Eess~ ona K¨aesoleva ~ oppevahendi aluseks on autori poolt viimastel aastatel Tallinna Tehnika¨ ulikoo- lis bakalaureuse~ oppe u ¨li~ opilastele peetud u ¨he muutuja funktsiooni diferentsiaal- ja inte- graalarvutuse loengud nimetuse "Matemaatiline anal¨ uu¨s I" all. Siiski ei ole tegu pelgalt u ¨hel semestril esitatu kirjapanekuga. Lisatud on
1. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| =a kui a 0; -a kui a < 0. Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a||b| 3. |a + b| |a| + |b| 4. |a - b| ||a| - |b|| Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - ,a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-,a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Tõkestatud hulgad. Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (a,b) nii, et A (a,b). 2. Jäävad ja muutuvad suurused. Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suu
a)L(f+g)= L(f) + L(g) kui f, g V (aditiivsus) b) L(cf) = cL(f) kui f V ja c R tõestust. (homogeensus). Määramata integraal on lineaarne operaator, st () + ()= () + () ja/või () = c () ( c ). 13). (Määratud integraali lineaarsuse omadus tõestusega). Lause: Määratud integraali 2).(Näidata, et määramata integraal on lineaarne operaator)
Kõik kommentaarid