Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Geomeetria stereomeetria (0)

5 VÄGA HEA
Punktid

Esitatud küsimused

  • Millise d väärtuse korral on prisma ruumala maksimaalne?
  • Kui ühe ruutmeetri värvimiseks kulub 200 g värvi?
  • Millises suhtes jaotab lõiketasand CKL püramiidi ruumala?
  • Kui kaugle kera keskpunktist peab asuma püramiidi põhi et püramiidi ruumala oleks maksimaalne?
Vasakule Paremale
Geomeetria stereomeetria #1 Geomeetria stereomeetria #2 Geomeetria stereomeetria #3 Geomeetria stereomeetria #4 Geomeetria stereomeetria #5 Geomeetria stereomeetria #6 Geomeetria stereomeetria #7 Geomeetria stereomeetria #8 Geomeetria stereomeetria #9 Geomeetria stereomeetria #10 Geomeetria stereomeetria #11 Geomeetria stereomeetria #12 Geomeetria stereomeetria #13 Geomeetria stereomeetria #14 Geomeetria stereomeetria #15 Geomeetria stereomeetria #16 Geomeetria stereomeetria #17
Punktid Tasuta Faili alla laadimine on tasuta
Leheküljed ~ 17 lehte Lehekülgede arv dokumendis
Aeg2017-12-23 Kuupäev, millal dokument üles laeti
Allalaadimisi 372 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor andriluik Õppematerjali autor

Sarnased õppematerjalid

thumbnail
8
doc

12. klass matemaatika kordamine

1. Arvud, mis väljendavad risttahuka mõõtmeid moodustavad geomeetrilise jada. Risttahuka põhja pindala on 108 m² ja täispindala 888 m². Leia risttahuka mõõtmed. 2. Urnis on 5 musta, 7 kollast ja 4 punast palli. Leia tõenäosus, et juhuslikult võetud kolme palli hulgas on. 1) vähemalt 2 kollast palli; 2) Kõik erinevat värvi pallid; 3) kõik ühtevärvi pallid. 3. Leia kõik reaalarvude paarid (x;y), mis rahuldavad võrrandit 2 x +1 = 4 y 2 +1 ja võrratust 2 x 2 y . 4. Kahe positiivse arvu vahe moodustab 1/19 nende kuupide vahest, nend4e korrutis on aga ½ võrra väiksem nende ruutude poolsummast. Leia need arvud. 5. Lahenda võrrand 3sin 9 + 3 = 3 vahemikus (-2; 2). 6. Võrdkülgsesse kolmnurka küljega a on kujundatud teine võrdkülgne kolmnurk, mille tipud asuvad esimese kolmnurga külgedel jaotades need suhtes 1:2. Leia väiksema kolmnurga pindala. 7. Koonusekujulise veiniklaasi kõrgus on h

Matemaatika
thumbnail
7
doc

Matemaatika riigieksam

23.05.1998 a matemaatika riigieksam Lehe haldamist toetavad Topauto ja meelespea.net Põhivariant 1. rida 1998 aasta matemaatika riigieksami ülesannete lahendused 8 - x 12 x +2 1. (5p) Lihtsustage avaldist ning näidake, et selle väärtus ei sõltu x väärtusest. 6 2- x 18 x 21-x Lahendus: Valemid, mida lihtsustamisel kasutati: 1 a n ; ( ab ) = a n bn ; ( a n ) = a n m n m a - n = n ; a m+ n = a m a Vastus: Avaldise väärtus ei sõltu x väärtusest, lihtsustatud avaldises x puudub. Vastus on 2. 2. (10p) Ühistu maast 80% on põldude all ja 51 ha on metsa. Mitte põllumaast 15% on hei

Matemaatika
thumbnail
20
pdf

Geomeetria/Planimeetria.

KORDAMINE RIIGIEKSAMIKS VI teema Geomeetria PLANIMEETRIA Tasandilised kujundid ja nendega seotud valemid. Ristkülik d b S  ab P  2a  b  d  a2  b2 a a Ruut d S  a2 a P  4a d a 2 Rööpkülik d1  S  ah  ab sin  h b P  2a  b  d2      180 0 d1  d 2  2a 2  b 2  a

Geomeetria
thumbnail
7
doc

Riigieksami lahendused II

23.05.1998 a matemaatika riigieksam Lehe haldamist toetavad Topauto ja meelespea.net Põhivariant 2. rida 1998 aasta matemaatika riigieksami ülesannete lahendused 7 y -1 - 4 x -1 1. (5p) Leidke avaldise väärtus, kui x : y = 3 : 4. 3y -1 - x -1 Lahendus: 7 ( 4( x y 7x - 4y - -1 7 y - 4x -1 y = (x x = xy = ( 7 x - 4 y ) xy = 7 x - 4 y

Matemaatika
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

2007. aasta matemaatika riigieksami ülesanded koos lahenduste ja kommentaaridega 2 1. ÜLESANNE (5 punkti) Ülesannete tekstid 1 5x 1 I Antud on avaldis 2 , kus x 0 ja x . x 25 x 2 x 0 5 1) Lihtsustage see avaldis. 3 2) Arvutage avaldise väärtus, kui x 2 . Vastus andke täpsusega 10 2. 2 x 2 (9 x 2 x 0 ) 1 II Antud on avaldis , kus x 0 ja x . 1 3x 3 1)

Algebra ja analüütiline geomeetria
thumbnail
10
ppt

Koonus referaat

Koonus Koonuseks nimetatakse pöördkeha, mis tekib täisnurkse kolmnurga pöörlemisel ümber oma kaateti koonuse Külgpindala Täispindala moodustaja Sk = r m d S = Sk + S p = pin ülg gl et m = r (r + m ) ek h us on Ruumala ko 1 es unook V = r 2h r 3 koonuse põhi Ruumalade suhe Võrdse kõrguse ja põhja raadiuse p

Matemaatika
thumbnail
11
pdf

8. klassi raudvara: PTK 5

5.ptk Ringjoon ja korrapärane kolmnurk 8.klass Õpitulemused Näited 1.Ringjoone kaar ja kõõl - kaar: ringjoone osa, Ül.1060 saadakse vähemalt kahe punkti märkimisel Ringjoone punktist on joonestatud kaks ringjoonele; tähistamine: kirjuatatakse raadiusega võrdset kõõlu. Leida kõõlude otspunktide tähised (vajadusel lisatakse veel vaheline nurk. kolmas täht vahele) ja tõmmatakse kohale joonestada kõõlude otspunktidesse raadiused kaareke; mõõdetakse kaarekraadides; kõõl: tekivad kaks võrdkülgset kolmnurka ringjoone kaht punkti ühendav lõik, kõige iga nurk on 60° pikem kõõl on ringjoone diameeter kõõlude vahele jääb kaks sellist nurka seega kõõlude vaheline nurk on 2 60°=120° NB kesknurk suurusega 1° toetub kaarele, mis moodustab ringjoonest 2.Kesknurk - ringjoone kahe

Matemaatika
thumbnail
12
ppt

Pöördkehad

Pöördkehad reede, 10. mai 2013. a Külli Nõmmiste Jõhvi Gümnaasium Definitsioon Pöördkehaks nimetatakse geomeetrilist keha, mis tekib tasandilise kujundi pöörlemisel ümber kujundi tasandil asetseva sirge (telje) Pildid: http://mathworld.wolfram.com/ Silinder Silindriks nimetatakse pöördkeha, mis tekib ristküliku pöörlemisel ümber ühe oma külje Külgpindala Täispindala S k = 2 r h S = Sk + 2 S p = silindri külgpind = 2 r (r + h) gl et h Ruumala i r dnili s V = r 2h silindri moodustaja r silindri põhjad Silindr

Matemaatika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun