Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Pöördkehad (0)

1 Hindamata
Punktid
Vasakule Paremale
Pöördkehad #1 Pöördkehad #2 Pöördkehad #3 Pöördkehad #4 Pöördkehad #5 Pöördkehad #6 Pöördkehad #7 Pöördkehad #8 Pöördkehad #9 Pöördkehad #10 Pöördkehad #11 Pöördkehad #12
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 12 lehte Lehekülgede arv dokumendis
Aeg2013-05-10 Kuupäev, millal dokument üles laeti
Allalaadimisi 25 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Kaddie Õppematerjali autor
9,klassi matemaatika pöördkehad, silindrid, koonused, kerad koos valemite ja selgitustega :)

Sarnased õppematerjalid

thumbnail
10
ppt

Koonus referaat

Koonus Koonuseks nimetatakse pöördkeha, mis tekib täisnurkse kolmnurga pöörlemisel ümber oma kaateti koonuse Külgpindala Täispindala moodustaja Sk = r m d S = Sk + S p = pin ülg gl et m = r (r + m ) ek h us on Ruumala ko 1 es unook V = r 2h r 3 koonuse põhi Ruumalade suhe Võrdse kõrguse ja põhja raadiuse p

Matemaatika
thumbnail
34
pdf

Geomeetria stereomeetria

STEREOMEETRIA Risttahukas S  2ab  bc  ac  c V  S p  H  abc d d  a2  b2  c2 b a Kuup S  6a 2 d a V  a3 d a 3 a a Püstprisma S t  2S p  S k H= l Kü lg pindala S k  P  H V  Sp  H A B C Kaldprisma S t  2S p  S k Ris

Geomeetria
thumbnail
1
rtf

Silinder,koonus,kera

Silinder-keha,mille moodustab ümber oma ühe külje pöörlev ristkülik.Külge,mille ümber pöörleb ristkülik, nim silindri teljeks.Külge/pikkust nim silindri moodustajaks ja selle poolt pöörlemisel tekitatud pinda silindri külgpinnaks.Ristküliku küljed tekitavad pöörlemisel kaks võrdset ringi,mida nim silindri põhjadeks.Silindri lõikamisel tasandiga,mis läbib silindri telge,saame lõikeks ristküliku, mida nim silindri telglõikeks.Silindri lõikamisel tasandiga,mis on risti silindri teljega,saame lõikeks põhjadega võrdse ringi,mida nim silindri ristlõikeks.Silindri põhjade vahelist kaugust ja ka vastava pikkusega lõiku nim silindri kõrguseks.Silindri külgpindala on võrdne põhja ümbermõõdu ja kõrguse korrutisega.Sk=P*h;Sk=2*3,14rh;St=2Sp+Sk;V=Sp*h Koonus-keha,mille moodustab ühe oma kaateti ümber pöörlev täisnurkne kolmnurk.Kaatetit,mille ümber täisnurkne kolmnurk pöörleb nim koonuse teljeks,hüpotenuusi aga koonuse moodustajaks.Pöörleva kolmn

Matemaatika
thumbnail
17
doc

Valemid ja Mõisted

1. Ristkülik Mõiste: Ristkülik on nelinurk, mille kõik nurgad on täisnurgad. Pindala: S=ab Ümbermõõt: Ü=2(a+b) Omadused: 1. Ristkülikul on kõik rööpküliku omadused. 2. Kõik nurgad on täisnurgad 3. Diagonaalid on võrdsed 4. Ristkülikul on ümberringjoon, mille keskpunktiks on diagonaalide lõikepunkt (O) ning raadiuseks pool diagonaali. 5. Ristkülikul on kaks sümmeetriatelge ja sümmeetriakeskpunkt. Ruut: Mõiste: Ruutu võib defineerida, kui a) ristkülikut, mille lähisküljed on võrdsed b) rombi, mille üks nurk on täisnurk c) rööpkülikut, mille lähisküljedon võrdsed ja üks nurk on täisnurk. Pindala: S=a² Ümbermõõt: Ü=4a Omadused: 1. Ruudul on nii ristküliku kui ka rombi omadused 2. Ruudu küljed on võrdsed 3. Ruudu nurgad on täisnurgad 4. Ruut on korrapärane nelinurk 5. Ruudul on siseringjoon, mille keskpunktiks on diagonaalide lõikepunkt (O) ning raadiusekspool külje pik

Matemaatika
thumbnail
2
docx

Stereomeetria kujundid

VII kursus STEREOMEETRIA Keha Põhja pindala Külgpindala Täispindala Ruumala -------------------------------------------------------------------------------------------------------------------------------------------------------------- TAHKKEHAD .................................................................................................................................................................................................................. Prisma Sk=ür l St =Sk +2Sp V=Sp h Püstprisma Sk

Matemaatika
thumbnail
8
odp

Stereomeetria Mari 2013 Rapla TG Stereomeetria Hulktahukad, pöördkehad Stereomeetria on elementaargeomeetria haru, milles uuritakse kujundeid ruumis. (tasand, prisma, püramiid, tüvipüramiid, silinder, koonus, tüvikoonus, kera, kuup) Hulktahukaks nimetatakse geomeetrilist keha, mida piiravad ainult hulknurgad. Hulktahukat piiravaid hulknurki nimetatakes hulktahuka tahkudeks, hulknurkade tippe hulktahuka tippudeks ja hulknurkade külgi hulknurga servadeks. Hulktahukad jagunevad kumerateks ja mittekumerateks.

Matemaatika
thumbnail
3
docx

Koonus

Koonus Koonus on keha, mille moodustab ühe oma kaateti ümber pöörlev täisnurkne kolmnurk. Kaatet BC, mille ümber pööreb koonust moodustav täisnurkne kolmnurk, on koonuse teljeks. Kolmnurga hüpotenuus AB on koonuse moodustajaks. Koonuse moodustajat tähistatakse tavaliselt tähega m. Pöörleva kolmnurga teine kaatet CA moodustab ringi, mida nimetatakse koonuse põhjaks. Lõiku CA, mis on koonuse põhja raadius, tähistatakse ka tähega r. Kolmnurga hüpotenuus moodustab pöörlemisel koonuse külgpinna. Punkti B nimetatakse koonuse tipuks ning tipu kaugust koonuse põhjast (lõiku BC) koonuse kõrguseks ning tähistatakse tavaliselt tähega H. Koonuse pinnalaotus Valemeid Koonuse täispindala Koonuse täispindala St on külgpindala Sk ja põhitahu pindala Sp summa St = Sk + Sp Koonuse külgpindala võrdub põhja ümbermõõdu ja

Matemaatika
thumbnail
2
docx

Ruumilised kujundid ja pöördkehad

Kõik kaldprismad on mittekorrapärased prismad. Sk= PH V= SpH Sp sõltub põhja kujundist St= Sk+2Sp Püramiid: Kaldpüramiid ja püstpüramiid 1 tahk on hulknurk ja ülejäänud tahud on ühise tipuga kolmnurgad Kõrgus on tipu kaugust põhjast, alati põhjaga risti. Tipp on külgservade ühine punkt Korrapärased ja mittekorrapärased püramiidid m = külje kõrgus ehk apoteem Sk=Pm/2 Sp sõltub põhja kujundist St= Sk+Sp V=SpH/3 Pöördkehad Pöördkehad on ruumilised kujundid, mis tekivad mingi tasandilise kujundi pöörlemisel ümber ühe külje. Silinder ­ tekib ristküliku pöörlemisel Külgtahk on ristkülik. Silindritelg ­ ristküliku külg, mille ümber ta pöörleb Selleks, et silindril kõik ära arvutada on vaja tema raadiust ja kõrgust Moodustaja = m ­ telje vastas asetsev ristküliku külg. Telje ja moodustaja pikkus on silindri kõrgus. Külgpind ­ see osa silindrist, mille kujundab moodustaja Sp= r Sk= CH C=2 r

Matemaatika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun