Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Kompleksarvud gümnaasiumiõpikus (0)

1 Hindamata
Punktid

Lõik failist

Vasakule Paremale
Kompleksarvud gümnaasiumiõpikus #1 Kompleksarvud gümnaasiumiõpikus #2 Kompleksarvud gümnaasiumiõpikus #3 Kompleksarvud gümnaasiumiõpikus #4 Kompleksarvud gümnaasiumiõpikus #5 Kompleksarvud gümnaasiumiõpikus #6 Kompleksarvud gümnaasiumiõpikus #7 Kompleksarvud gümnaasiumiõpikus #8
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 8 lehte Lehekülgede arv dokumendis
Aeg2014-04-25 Kuupäev, millal dokument üles laeti
Allalaadimisi 16 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor 21aastat Õppematerjali autor
Kompleksarvud

Sarnased õppematerjalid

thumbnail
4
odt

Kompleksarvud

Kompleksarvud Kompleksarvu mõiste: Arve kujul a+ib, kus a ja b on reaalarvud ja i on imaginaarühik, nimetatakse kompleksarvudeks. Kõikide kompleksarvude hulka tähistatakse sümboliga C Kaks kompleksarvu on võrdsed parajasti siis, kui nende imaginaarosad ja reaalosad on vastavalt võrdsed a + bi = c + di <=> a = c ja b = d Kompleksarve a + bi ja a - bi nimetatakse kaaskompleksarvudeks. Näiteks 5+2i ja 5-2i. Kompleksarvu a + bi vastandarvuks nimetatakse kompleksarvu -a ­ bi. Näiteks 7+5i ja -7- 5i. Tehted kompleksarvudega: (a + bi) + (c + di) = (a + c) + (b + d)i (5 -3i)+(2 + 7i) = (5+2) + (-3+7)i = 7 + 4i

Matemaatika
thumbnail
76
pdf

Kordamine kompleksarv

Teist ja kolmandat j¨arku determinandid. Crameri valemid. Kompleksarvud Tartu 2016 Teist ja kolmandat j¨ arku determinandid. Crameri valemid. Kompl Sarruse (kolmnurga) reegel 3. j¨arku determinantide arvutamiseks Teist ja kolmandat j¨ arku determinandid. Crameri valemid. Kompl ¨ Ulesanne Arvutage determinandid 1 2 4 2 4 0

Matemaatika
thumbnail
104
pdf

Konspekt

I. Determinandid 1 Determinandi m~ oiste 1.1 Idee selgitus Algul defineerime esimest j¨ arku determinandi, siis esimest j¨arku determinandi abil teist j¨ arku determinandi, seej¨arel teist j¨arku determinandi abil kolmandat j¨ arku detereminandi jne, n-j¨arku determinandi defineerime (n - 1)-j¨arku determinandi kaudu. Sel- list defineerimisviisi nimetatakse induktiivseks ja vastavat objekti induktiivseks konstruktsiooniks. Eelnevalt on soovitatav tutvuda maatriksi m~oistega (II.1.1). Kooloniga v~ordus A := B t¨ahendab j¨argnevas, et A on defineeri- tud B kaudu. Seda v~ordust kasutame ka samav¨ a¨arsete t¨ ahistuste sissetoomiseks. 1.2 Esimest j¨ arku determinant Arvu a R determinandi |a| ehk esimest j¨ arku determinandi de- fineerime valemiga |a| := det a := a. 1.3 N¨ aide | - 5| = -5

Lineaaralgebra
thumbnail
9
doc

Lineaaralgebra

Lineaaralgebra I kontrolltöö teooriaküsimused 1. Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi , (1) kus a ja b on reaalarvud ja i on niinimetatud imaginaarühik, mis on määratud võrdustega i = -1 või i 2 = -1 ; Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal

Lineaaralgebra
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

Pöördmaatriksi omadused. 7. Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Vasturääkiv, kooskõlaline, määratu süsteem. Süsteemi maatriks ja laiendatud maatriks. 8. Süsteemi lahendamine Crameri valemitega. Maatriksi minor. Maatriksi astak. Maatriksi ridade ja veergude elementaarteisendused. Maatriksi rea juhtelement, treppmaatriks. Treppmaatriksi astak. Kronecker-Capelli teoreem 9. Gaussi meetodi sisu. 10. Kompleksarvu mõiste, imaginaarühik, kompleksarvu reaalosa ja imaginaarosa, kompleksarvude võrdsus, kaaskompleksarv. Kompleksarvude liitmise, korrutamise ja jagamise valemid. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvu geomeetriline tõlgendus, Kaaskompleksarvude ja kompleksarvude summa geomeetriline tõlgendus. Trigonomeetrilisel kujul antud kompleksarvude korrutamise, jagamise, astendamise ja juurimise valemid. Juurte arv. 11. Geomeetriline vektor

Algebra I
thumbnail
2
pdf

Lineaaralgebra

imaginaarühik. pAT 1* 2=r1*r2*(cos(1+2) +i sin(1+2)) n = p Kaaskompleksarv: Jägamine: Kaks kompleksarvu 1 x1 iy1 ja 2 x2 iy1 , mis Sümmeetriline maatriks: z1/z2 = (r1/r2)*(cos(1-2) + i sin(1-2)) Ruutmaatriksit A nimetatakse sümmeetriliseks maatriksiks, erinevad ainult imaginaarosa märgi poolest.

Lineaaralgebra
thumbnail
18
docx

Elementaarmatemaatika 1. teooria

ratsionaalarvude hulga 9. Irratsionaalarv- Lõpmatud mitteperioodilised kümnendmurrud 10. Reaalarvude hulk- Irratsionaalarvud koos ratsionaalarvudega moodustavad reaalarvude hulga. 11. Kompleksarv- Arve kujul a+ib, kus a ja b on reaalarvud ja i on imaginaarühik, nimetatakse kompleksarvudeks. Kõikide kompleksarvude hulka tähistatakse sümboliga C 12. Kompleksarvu moodul- · Kompleksarvule vastava punkti kaugust komplekstasandi nullpunktis nimetame kompleksarvu mooduliks z = 2 2 + 32 = 13 · Punktile P vastava kompleksarvu moodul · Ehk üldkujul: kompleksarvu a+bi moodul on z = a 2 + b2 13. Kompleksarvu geomeetriline esitus- · Kujutada ühel teljel pole võimalik, kuna omab nii reaal- kui ka imaginaarosa (mõlemad reaalarvud)

Elementaarmatemaatika 1
thumbnail
4
pdf

Lineaaralgebra I osaeksam 2013

1. Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi, (1) kus a ja b on reaalarvud ja i on nn. imaginaarühik, mis on määratud võrdustega i = - 1 või i 2 = -1 . Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z 2 = a 2 + b2 i loetakse võrdseteks ( z1 = z 2 ) , kui a1 = a 2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o. z = a + bi = 0 siis ja ainult siis, kui a = 0 ja b = 0. z = a + bi = r cos + i sin ehk z = r (cos + i sin ) Avaldist võrduse paremal poolel nimetatakse kompleksarvu z = a + bi trigonomeetriliseks kujuks; suurust r nimetatakse kompleksarvu z mooduliks ja suurust selle kompleksarvu argumendiks

Lineaaralgebra




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun