Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Tõmba moblasse sammulugeja! Tragimatele auhinnad Kõnni terviseks Sulge
Add link

Kategooria matemaatika - 647 õppematerjali

Matemaatika >> Matemaatika
matemaatika – Jada piirväärtus Arvu A nimetatakse jada a n piirväärtuseks, kui iga positiivse arvu ε1 jaoks leidub jadas järjekorranumber m, millest alates jada järgnevad liikmed erinevad arvust A vähem kui ε võrra, st. |an – A| < ε, kui n ≥ m. Ringjoone pikkuseks nimetatakse korrapäraste hulknurkade ümbermõõtude jada piirväärtust hulknurga tippude arvu tõkestamatul kasvamisel.
5
doc

"Matemaatika" - Referaat

Toila Gümnaasium Matemaatika Koostas:Tanel Seli Toila 2009 Matemaatika Sõna matemaatika tuleb kreekakeelsest sõnast mathma seetähendab õpitu, teadus. Matemaatika on teadusharu, mis uurib mitmesuguseid hulki ­ arvuhulki, punktihulki ehk kujundeid, funktsioonihulki jms. Peatähelepanu ei osutata seejuures hulkade sisulisele tähendusele, vaid nende elementide seostele ja omadustele. Palju matemaatika mõisteid, näiteks arv, geomeetriline kujund ja funktsioon, on tekkinud tegelike hulkade, esemete või seoste kõrvutamisel ja võrdlemisel, kusjuures on jäetud kõrvale kõik need omadused, mis matemaatika seisukohast pole olulised. Matemaatika eripära teiste teadustega võrreldes on, et matemaatikas ei saa pidada ühtki väidet (peale aksioomide ja definitsioonide) tõeseks, kui seda pole loogiliselt järeldatud varem teada olnud väiteist. Loogiline järeldamine on uute matemaatiliste tõdede saamise vahend. Matem...

Matemaatika - Keskkool
77 allalaadimist
5
pdf

Matemaatika riigieksam 2009

Sisaldab matemaatika riigieksami 2009, esimese variandi, teise poole lahendusi...

Matemaatika - Keskkool
661 allalaadimist
2
doc

Keskkooli matemaatika proovieksam

Matemaatika proovieksami ülesanded aastal 2008/2009 3. kursus Variant I 1. Lahendage juurvõrrand ja kontrollige saadud lahendeid: x + 2 = 4x -4 2. Lahendage eksponentvõrrand ja kontrollige saadud lahendeid: 2 -2 26x = 42x 3. Lahendage logaritmvõrrand ja kontrollige saadud lahendeid: ( log x ) 2 - 6 log x + 7 = 0 4. Leidke koonuse telglõike pindala, kui moodustaja on 15 cm ja kõrgus 12 cm. 5. On antud funktsioon y = 2x3 + x 2 · Leidke funktsiooni nullkohad X0 · Leidke funktsiooni positiivsus- ja negatiivsuspiirkond...

Matemaatika - Keskkool
228 allalaadimist
1
docx

Matemaatika valemid

Aritmeetiline jada: an = a1+(n-1)d d = an-an-1 Sn = Geomeetriline jada: an = a1qn-1 Sn = Hääbuv jada: S = Trigonomeetria: sin 2 2 2 = sin +cos = 1 1+tan = sin2 = 2cossin cos2 = 2cos2-1 tan2 = siinusteoreem: (ümberringjoone raadius) koosinusteoreem: a2=b2+c2-bccos erikülgne kolmnurk: S= n Põhivõrrandid: sinx= a x=(-1) +180n, n Z cox= a x=+360n, n Z tanx= a x= +180n, n Z Kaare pikkus: l= Sektori pindala: S= n Liitintress: c= a(1) a-algväärtus Vektorid: pikkus paralleelsus || ristseis X1X2+Y1Y2= 0 nurk vektorite vahel cos = Sirge võrrand: kahe punktiga tõusu ja algkoordinaadiga y= kx+b (lp y-teljega) tõusu ja punktiga y-y1=k(x-x1) Kahe sirge vastastikused asendid: paralleelsed A||...

Matemaatika - Keskkool
315 allalaadimist
2
docx

Põhikooli matemaatika proovieksami ülesanded 2013

PÕHIKOOLI MATEMAATIKA PROOVIEKSAMI ÜLESANDED 2013 Pane tähele! Ülesanded 1, 2, 3, 4 ja 5 on kohustuslikud ja valikülesannete (6, 7) hulgast lahenda omal valikul veel üks ülesanne. Maksimaalselt on võimalik kuue ülesande lahendamise eest saada 50 punkti. Ülesannete lahendamiseks on aega 180 minutit. Sul on lubatud kasutada taskuarvutit ja joonestusvahendeid. Jooniseid täienda vastavalt vajadusele ülesannete lehel, s.t. neid pole vaja lahenduste lehele uuesti joonestada. Hindamine: 45-50 punkti ­ hinne ,,5"; 35-40 punkti ­ hinne ,,4"; 23 ­ 34 punkti ­ hinne ,,3"; 10-22 punkti ­ hinne ,,2"; 0-9 punkti ­ hinne ,,1". Ülesanne 1. (8 punkti) a3 - ab2 a 2 + b2 1 : + 2b a= 27 2 Lihtsusta avaldis a - ab a...

Matemaatika - Põhikool
87 allalaadimist
5
doc

X klassi matemaatika lühikonspekt

X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b  N korral a  b  b  a . Liitmis kommutatiivsus. 2. Iga a, b  N korral a  b  b  a . Korrutamise kommutatiivsus. 3. Iga a, b, c  N korral a   b  c    a  b   c . Liitmise assotsiatiivsus. 4. Iga a, b, c  N korral a   b  c    a  b   c . Korrutamise assotsiatiivsus. 5. Iga a, b, c  N korral a   b  c   a  b  a  c ....

Matemaatika - Kutsekool
93 allalaadimist
16
docx

Kitsa matemaatika eksami ülesanded

LIHTSUSTAMINE TÕENÄOSUSE ÜLESANDED: TÕENÄOSU FUNKTSIOON FUNKTSIOON FUNKTSIOON VÕRRANDID Geomeetria PROTSENT VEKTOR, VÕRRANDITE KOOSTAMINE Integraal, pindala arvutamine JADA ...

Matemaatika - Keskkool
156 allalaadimist
2
doc

Matemaatika 9. klassi kordamine alustamiseks

Lihtsusta 5a a 2  ab  b 2 a 3  b3 1)  : -1 1  5a 25a 2  10a  1 5a 2  a  5ab  b  5 2 2a  9  8 2a  3 2)    2  : 2  2a  3 3  2a 4a  9  4a  12a  9 2  1 1 1  3a  2  6a 1 3)   : 2     2  6a 27a  1 1  3a  9a  3 a a 2. Turist kavatses matkata 252 km. Kuna ta läbis iga päev 3 km rohkem kui kavatsetud,...

Matemaatika - Keskkool
43 allalaadimist
2
doc

Matemaatika funktsioonid

1. Leia määramispiirkond. a. y  4 x 3  3 x  1 X=R 3x  6 b. y   x  1 x 2  4   X=R{-2, 1, 2} c. y x 2  6x  8 X    ;2   4;  x3 d. y  X    4;0   4;  x 3  16 x 2. Leia nullkohad, pos., neg. piirkonnad. a. y  x 3  6 x 2  9 x  54 X     3;3   6;  ; X ...

Matemaatika - Keskkool
38 allalaadimist
64
pdf

Matemaatika on lõbus 2. klass

Seda võiks teha koos ema või isaga.Kõik ülesanded on järjestatud teemade kaupa,mis tähendab et kõik teemad tuleb läbi võtta.Juhul kui laps oskab juba nt 2 klassi liitmist ja käib 2 klassis,oleks tarvilik ikkagi algusest alustada,et laps materjali kinnistaks.Lisaks on veel ka iga natukese aja tagant kontrolltöö sarnased leheküljed kus all on hinde lahter kuhu vanem võib lapsele hinde panna ja iga teemal on ka osa punast teksti ,mis tähendab et see tuleb meelde jätta. HEAD LAHENDAMIST 2 KLASS KELL 1H = 60min 30min = pool tundi 15min = veerand tundi 45 min= kolmveerand tundi 1min = 60s TÄIDA TABEL KELL KELL KELL PRAEGU 30 MIN 1H PÄRAST PÄRAST 6.00 8.00 10.40 4.00 8.45 KIRJUTA LÜNKA S...

Matemaatika - Põhikool
55 allalaadimist
0
zip

Matemaatika valemid

Palju valemeid matemaatikas...

Matemaatika - Keskkool
319 allalaadimist
2
docx

TPT matemaatika proovieksam 1 semester

Proovieksam matemaatikas E Variant F Variant 1) Teosta tehted ligikaudsete arvudega ja 1) Teosta tehted ligikaudsete arvudega ja arvuta arvuta tulemusega viga. tulemusega viga. 1.1. 3500(±0,8%) + 240(±0,5%) = 1.1 1,87(±0,5%) - 0,39(±0,1%) = 1.2. 2,48(±0,7%) 0,54( ±1,3%) = 1.2. 163(±0,4%) : 0,82(±0,6%) = 2) Arvuta taskuarvutiga ja kirjuta 2) Arvuta taskuarvutiga ja kirujta sõrmeprogramm. sõrmeprogramm. 3,47 1015 + 2,15 10 3 = 1,23 10 -25 + 3,8 10 -26 7 ,95 10 14 + 11, 25 10 3 = 2.1. 2.1. 4,983 10 - 24 2.2. 0,587 tan 78 32' =...

Matemaatika - Keskkool
69 allalaadimist
1
docx

Matemaatika põhikooliriigieksam 2007 A variant

(3m-4n)²-3m(3m-7n)=9m²-24mn+16n²-9m²+21mn=16n²-3mn Leian avaldise täpse väärtuse, kui m=2/3 ja n=-0,5 16*(-0,5)²-3*2/3*(-0,5)=5 55%*20/100%=11 (ha) 2) 5 20st 5:20=0,25 0,25*100%=25% 3) 20-11-5=4 (ha) 4) 4 20st 4:20=0,2 0,2*100%=20% Olgu üks arv x ja teine x+7, nende arvude korrutis on 494, saan võrrandi x(x+7)=494 x²+7x-494=0 kasutan ruutvõrrandi lahendi valemit Leian teise arvu 19+7=26 Kontroll: Olgu üks arv 19 ja teine 7 võrra suurem 19+7=26, nende arvude korrutis on 19*26=494. Vastus: Need arvud on 19 ja 26. 1)Leian põranda pindala S=ab S=3,*2,7=8,91 (m²) 2) Leian ruudukujulise plaadi pindala S=a² S=15²=225 (cm²)=0,0225 (m²) 3) Leian mitu ruudukujulist plaati mahub põrandale, kui vahesid pole jäetud 8,91:0,0225=396 (plaati) 4) 90% ON 396 396*100%/90%=440 (plaati) 1) Täisnurkne 2) Arvutan lõigu AB ligikaudse pikkuse 1) Kasutades Pythagorase teoreemi leian külje AC a²+b²=c² c=9²+12²=225=15 2) Kasut...

Matemaatika - Keskkool
145 allalaadimist
5
doc

Matemaatika valemid

Suur valik erinevaid valemeid- nii gümnaasiumis kui ka ülikoolis kasutamiseks. N: astmed, juured, integraalid, jada, trigonomeetria, setereomeetria, tõenäosus, võrrandid, logaritmid, statistika, vektorid jne...

Matemaatika - Keskkool
555 allalaadimist
2
doc

Matemaatika (statistika uurimustöö klassi nimede kohta)

Statistika uurimistöö Teema: nimetähed Üldkogum :12 klass Valim: oma klass Variatsioonirida: 3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7,7,7,8 N = 26 Tunnus : diskreetne Jaotustabel X (Arv) 3 4 5 6 7 8 F( Sagedus) 1 6 10 5 3 1 W (Suhteline3,80% 23,10% 38,50% 19,20% 11,50% 3,80% sagedus%) T ä h te d e a r v n im e s 12 10 8 S a g e d u s 6 F( S agedus ) 4 2 0 3 4 5 6 7 8 T ä h te d e a r v Mediaan - variatsioonrea keskmine liige Me = 5 Mood - variatsioonrea kõige suurema es...

Matemaatika - Keskkool
90 allalaadimist
10
xls

Matemaatika statistika töö exelis

Aasta 2008 vahemik 0-19 20-29 30-39 40-49 50-59 60-69 22 Xi 9,5 14,50 34,5 44,5 54,5 64,5 24 Fi 0 3 6 8 11 6 28 Pi 0 0,06 0,14 0,18 0,25 0,14 30 Xi-X -9,5 -41,1 -21,1 -11,1 -1,1 8,9 34 (Xi-X)2 90,25 1690,31 445,79 123,51 1,24 78,97 36 Pi*(Xi-X) 0 6,15 12,3 16,4 22,6 12,3 38 Pi% 0,00% 6,00% 14,00% 18,00% 25,00% 14,00% 38 39 Mood 54 Standardhälve 17,79711 40 Mediaan 55,5 40 keskmine 55,61364 41...

Matemaatika - Keskkool
50 allalaadimist
1
doc

Matemaatika kontrolltöö

kursus 1.kontrolltöö 10.klassi matemaatika õpik, lk. 3 - 29 2 1. Arvutage arvude ja -11 a)summa vastandarv; b)vastandarvude vahe; c) vahe pöördarv; 5 d)pöördarvude summa; e)pöördarvude vahe ja vastandarvude summa jagatis; j)vastandarvude summa ja pöördarvude vahe korrutis. 2. Avaldage kahe täisarvu jagatisena a)0,(4); b)0,113(4); c)0,4(12); d)1,(8); e)0,3(5); f)2,3(154). 3 2 3. Arvutage. Vastus esitage hariliku murruna või segaarvuna. a) 1,2( 7 ) - ; b) 0,4( 35) +1 ; 10 11 9 1 2 3 2 c) 1,2( 5) ; d) 0, ( 42 ) : 1 ; e) 3,2 - : 0,017 + 0,013 :...

Matemaatika - Keskkool
119 allalaadimist
12
pdf

2009. aasta matemaatika riigieksami ülesanded ja lahendused

MATEMAATIKA RIIGIEKSAM 2010 Eksami eesmärk Matemaatika riigieksami peamisteks eesmärkideks on: · teada saada, kui struktureeritud ja korrastatud on gümnaasiumilõpetaja matemaatikaalased teadmised; · selgitada välja, kui hästi suudab õpilane õpitut rakendada (näiteks lahendada mitterutiinseid ülesandeid); · teada saada, milline on gümnaasiumilõpetajate matemaatikaalane ettevalmistus õpingute jätkamiseks järgmisel haridusastmel. Eksami vorm Matemaatika riigieksami põhieksam on kahes variandis ja lisaeksam on ühes variandis. Matemaatika riigieksam (ja ka lisaeksam) on kaheosaline kirjalik eksam ­ 1. osa kestus on 120 minutit ja 2. osa kestus on 150 minutit. Kahe eksamiosa vahel on 45 minutiline vaheaeg. Käesoleva õppeaasta matemaatika riigieksam toimub 4. mail 2010.a, algusega kell 10.00. Eksaminandidele, kes mõjuvatel põhjustel põhieksamil osaleda ei saa, korraldatakse lisaeksam 17. mail 201...

Matemaatika - Keskkool
1192 allalaadimist
8
doc

12. klass matemaatika kordamine

Arvud, mis väljendavad risttahuka mõõtmeid moodustavad geomeetrilise jada. Risttahuka põhja pindala on 108 m² ja täispindala 888 m². Leia risttahuka mõõtmed. 2. Urnis on 5 musta, 7 kollast ja 4 punast palli. Leia tõenäosus, et juhuslikult võetud kolme palli hulgas on. 1) vähemalt 2 kollast palli; 2) Kõik erinevat värvi pallid; 3) kõik ühtevärvi pallid. 3. Leia kõik reaalarvude paarid (x;y), mis rahuldavad võrrandit 2 x +1 = 4 y 2 +1 ja võrratust 2 x 2 y . 4. Kahe positiivse arvu vahe moodustab 1/19 nende kuupide vahest, nend4e korrutis on aga ½ võrra väiksem nende ruutude poolsummast. Leia need arvud. 5. Lahenda võrrand 3sin 9 + 3 = 3 vahemikus (-2; 2). 6. Võrdkülgsesse kolmnurka küljega a on kujundatud teine võrdkülgne kolmnurk, mille tipud asuvad esimese kolmnurga külgedel jaotades need suhtes 1:2. Leia väiksema kolmnurga pindala. 7. Koonusekujulise veiniklaasi kõrgus on...

Matemaatika - Keskkool
302 allalaadimist
2
doc

11. klass matemaatika eksamiks kordamine

Antud on funktsioonid f(x) = logx ja g(x) = -1 1.1. Skitseeri ühes ja samas teljestikus nende funktsioonide graafikud; 1.2. Leia millistes punktides on nende funktsioonide väärtused võrdsed; 1.3. Leia milliste argumendi x väärtuste korral on funktsiooni f(x) väärtused väiksemad funktsiooni g(x) väärtustest; 1.4. Leia funktsiooni f(x) väärtus, kui x = 10 cos 4 2. On antud funktsioon y =x 3 -5x 2 . Leia selle funktsiooni 2.1. nullkohad; 2.2. positiivsus- ja negatiivsusvahemikud; 2.3. ekstreemumkohad, nende liik ning ekstreemumpunktid; 2.4. kasvamis- ja kahanemisvahemikud; 2.5. skitseeri selle funktsiooni graafik; 2.6. graafikule puutuja punktis, mille abstsiss on 5. 3. Antud on funktsioonid f(x) = sin2x ja g(x) = sinx. 3.1. lahenda võrrand f(x) = g(x) lõigul [0;2] ; 3.2. joonesta ühes ja samas teljestikus funktsioonide f(x) ja g(x) graafikud lõigus...

Matemaatika - Keskkool
208 allalaadimist


Registreeri ja saadame uutele kasutajatele
faili e-mailile TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun