Toila Gümnaasium Matemaatika Koostas:Tanel Seli Toila 2009 Matemaatika Sõna matemaatika tuleb kreekakeelsest sõnast mathma seetähendab õpitu, teadus. Matemaatika on teadusharu, mis uurib mitmesuguseid hulki arvuhulki, punktihulki ehk kujundeid, funktsioonihulki jms. Peatähelepanu ei osutata seejuures hulkade sisulisele tähendusele, vaid nende elementide seostele ja omadustele. Palju matemaatika mõisteid, näiteks arv, geomeetriline kujund ja funktsioon, on tekkinud tegelike hulkade, esemete või seoste kõrvutamisel ja võrdlemisel, kusjuures on jäetud kõrvale kõik need omadused, mis matemaatika seisukohast pole olulised. Matemaatika eripära teiste teadustega võrreldes on, et matemaatikas ei saa pidada ühtki väidet (peale aksioomide ja definitsioonide) tõeseks, kui seda pole loogiliselt järeldatud varem teada olnud väiteist. Loogiline järeldamine on uute...
Sisaldab matemaatika riigieksami 2009, esimese variandi, teise poole lahendusi...
Leidke koonuse telglõike pindala, kui moodustaja on 15 cm ja kõrgus 12 cm. 5. On antud funktsioon y = 2x3 + x 2 · Leidke funktsiooni nullkohad X0 · Leidke funktsiooni positiivsus- ja negatiivsuspiirkond X+, X- · Leidke funktsiooni tuletis · Leidke funktsiooni kasvamine ja kahanemine X , X · Leidke ekstreemumpunktid · Skitseerige funktsiooni graafik Matemaatika proovieksami ülesanded aastal 2008/2009 3. kursus Variant II 1. Lahendage juurvõrrand ja kontrollige saadud lahendeid: x - 6 = 5 x -38 2. Lahendage eksponentvõrrand ja kontrollige saadud lahendeid: 2 +7...
Aritmeetiline jada: an = a1+(n-1)d d = an-an-1 Sn = Geomeetriline jada: an = a1qn-1 Sn = Hääbuv jada: S = Trigonomeetria: sin 2 2 2 = sin +cos = 1 1+tan = sin2 = 2cossin cos2 = 2cos2-1 tan2 = siinusteoreem: (ümberringjoone raadius) koosinusteoreem: a2=b2+c2-bccos erikülgne kolmnurk: S= n Põhivõrrandid: sinx= a x=(-1) +180n, n Z cox= a x=+360n, n Z tanx= a x= +180n, n Z Kaare pikkus: l= Sektori pindala: S= n Liitintress: c= a(1) a-algväärtus Vektorid: pikkus paralleelsus || ristseis X1X2+Y1Y2= 0 nurk vektorite vahel cos = Sirge võrrand: kahe punktiga tõusu ja algkoordinaadiga y= kx+b (lp y-teljega) tõusu ja punktiga y-y1=k(x-x1) Kahe sirge vastastikused asendid: paralleelsed...
PÕHIKOOLI MATEMAATIKA PROOVIEKSAMI ÜLESANDED 2013 Pane tähele! Ülesanded 1, 2, 3, 4 ja 5 on kohustuslikud ja valikülesannete (6, 7) hulgast lahenda omal valikul veel üks ülesanne. Maksimaalselt on võimalik kuue ülesande lahendamise eest saada 50 punkti. Ülesannete lahendamiseks on aega 180 minutit. Sul on lubatud kasutada taskuarvutit ja joonestusvahendeid. Jooniseid täienda vastavalt vajadusele ülesannete lehel, s.t. neid pole vaja lahenduste lehele uuesti joonestada. Hindamine: 45-50 punkti hinne ,,5"; 35-40 punkti hinne ,,4"; 23 34 punkti hinne ,,3"; 10-22 punkti hinne ,,2"; 0-9 punkti hinne ,,1". Ülesanne 1. (8 punkti) a3 - ab2 a 2 + b2 1 : + 2b a= 27 2 Lihtsusta avaldis a - ab a...
X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b N korral a b b a . Liitmis kommutatiivsus. 2. Iga a, b N korral a b b a . Korrutamise kommutatiivsus. 3. Iga a, b, c N korral a b c a b c . Liitmise assotsiatiivsus. 4. Iga a, b, c N korral a b c a b c . Korrutamise assotsiatiivsus. 5. Iga a, b, c N korral a b c a b a c . Korrutamise distributiivsus l...
LIHTSUSTAMINE TÕENÄOSUSE ÜLESANDED: TÕENÄOSU FUNKTSIOON FUNKTSIOON FUNKTSIOON VÕRRANDID Geomeetria PROTSENT VEKTOR, VÕRRANDITE KOOSTAMINE Integraal, pindala arvutamine JADA ...
Lihtsusta 5a a 2 ab b 2 a 3 b3 1) : -1 1 5a 25a 2 10a 1 5a 2 a 5ab b 5 2 2a 9 8 2a 3 2) 2 : 2 2a 3 3 2a 4a 9 4a 12a 9 2 1 1 1 3a 2 6a 1 3) : 2 2 6a 27a 1 1 3a 9a 3 a a 2. Turist kavatses matkata 252 km. Kuna ta läbis iga päev 3 km rohkem kui kavatsetud, siis kestis matk planeeritust 2 päeva vähem. Mitu päeva kestis matk?...
1. Leia määramispiirkond. a. y 4 x 3 3 x 1 X=R 3x 6 b. y x 1 x 2 4 X=R{-2, 1, 2} c. y x 2 6x 8 X ;2 4; x3 d. y X 4;0 4; x 3 16 x 2. Leia nullkohad, pos., neg. piirkonnad. a. y x 3 6 x 2 9 x 54 X 3;3 6; ; X ;3 3;6 4...
Seda võiks teha koos ema või isaga.Kõik ülesanded on järjestatud teemade kaupa,mis tähendab et kõik teemad tuleb läbi võtta.Juhul kui laps oskab juba nt 2 klassi liitmist ja käib 2 klassis,oleks tarvilik ikkagi algusest alustada,et laps materjali kinnistaks.Lisaks on veel ka iga natukese aja tagant kontrolltöö sarnased leheküljed kus all on hinde lahter kuhu vanem võib lapsele hinde panna ja iga teemal on ka osa punast teksti ,mis tähendab et see tuleb meelde jätta. HEAD LAHENDAMIST 2 KLASS KELL 1H = 60min 30min = pool tundi 15min = veerand tundi 45 min= kolmveerand tundi 1min = 60s TÄIDA TABEL KELL KELL KELL PRAEGU 30 MIN 1H PÄRAST PÄRAST 6.00 8.00 10.40 4.00 8.45 KIRJUTA LÜNKA SÕNAD ABI SAAD KELLAL...
docstxt/122703085226304.txt...
Proovieksam matemaatikas E Variant F Variant 1) Teosta tehted ligikaudsete arvudega ja 1) Teosta tehted ligikaudsete arvudega ja arvuta arvuta tulemusega viga. tulemusega viga. 1.1. 3500(±0,8%) + 240(±0,5%) = 1.1 1,87(±0,5%) - 0,39(±0,1%) = 1.2. 2,48(±0,7%) 0,54( ±1,3%) = 1.2. 163(±0,4%) : 0,82(±0,6%) = 2) Arvuta taskuarvutiga ja kirjuta 2) Arvuta taskuarvutiga ja kirujta sõrmeprogramm. sõrmeprogramm. 3,47 1015 + 2,15 10 3 = 1,23 10 -25 + 3,8 10 -26 7 ,95 10 14 + 11, 25 10 3 = 2.1. 2.1. 4,983 10 - 24 2.2. 0,587 tan 78 32' =...
(3m-4n)²-3m(3m-7n)=9m²-24mn+16n²-9m²+21mn=16n²-3mn Leian avaldise täpse väärtuse, kui m=2/3 ja n=-0,5 16*(-0,5)²-3*2/3*(-0,5)=5 55%*20/100%=11 (ha) 2) 5 20st 5:20=0,25 0,25*100%=25% 3) 20-11-5=4 (ha) 4) 4 20st 4:20=0,2 0,2*100%=20% Olgu üks arv x ja teine x+7, nende arvude korrutis on 494, saan võrrandi x(x+7)=494 x²+7x-494=0 kasutan ruutvõrrandi lahendi valemit Leian teise arvu 19+7=26 Kontroll: Olgu üks arv 19 ja teine 7 võrra suurem 19+7=26, nende arvude korrutis on 19*26=494. Vastus: Need arvud on 19 ja 26. 1)Leian põranda pindala S=ab S=3,*2,7=8,91 (m²) 2) Leian ruudukujulise plaadi pindala S=a² S=15²=225 (cm²)=0,0225 (m²) 3) Leian mitu ruudukujulist plaati mahub põrandale, kui vahesid pole jäetud 8,91:0,0225=396 (plaati) 4) 90% ON 396 396*100%/90%=440 (plaati) 1) Täisnurkne 2) Arvutan lõigu AB ligikaudse pikkuse 1) Kasutades Pythagorase teoreemi leian külje AC a²+b²=c² c=9²+12²=225=15...
Suur valik erinevaid valemeid- nii gümnaasiumis kui ka ülikoolis kasutamiseks. N: astmed, juured, integraalid, jada, trigonomeetria, setereomeetria, tõenäosus, võrrandid, logaritmid, statistika, vektorid jne...
Statistika uurimistöö Teema: nimetähed Üldkogum :12 klass Valim: oma klass Variatsioonirida: 3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7,7,7,8 N = 26 Tunnus : diskreetne Jaotustabel X (Arv) 3 4 5 6 7 8 F( Sagedus) 1 6 10 5 3 1 W (Suhteline3,80% 23,10% 38,50% 19,20% 11,50% 3,80% sagedus%) T ä h te d e a r v n im e s 12 10 8 S a g e d u s 6 F( S agedus ) 4 2 0 3 4 5 6 7 8 T ä h te d e a r v Mediaan - variatsioonrea keskmine liige Me = 5 Mood - variatsioonrea kõige suu...
Aasta 2008 vahemik 0-19 20-29 30-39 40-49 50-59 60-69 22 Xi 9,5 14,50 34,5 44,5 54,5 64,5 24 Fi 0 3 6 8 11 6 28 Pi 0 0,06 0,14 0,18 0,25 0,14 30 Xi-X -9,5 -41,1 -21,1 -11,1 -1,1 8,9 34 (Xi-X)2 90,25 1690,31 445,79 123,51 1,24 78,97 36 Pi*(Xi-X) 0 6,15 12,3 16,4 22,6 12,3 38 Pi% 0,00% 6,00% 14,00% 18,00% 25,00% 14,00% 38 39 Mood 54 Standardhälve 17,79711 40 Mediaan 55,5 40 keskmine 55,61364 41...
10klass 1.kursus 1.kontrolltöö 10.klassi matemaatika õpik, lk. 3 - 29 2 1. Arvutage arvude ja -11 a)summa vastandarv; b)vastandarvude vahe; c) vahe pöördarv; 5 d)pöördarvude summa; e)pöördarvude vahe ja vastandarvude summa jagatis; j)vastandarvude summa ja pöördarvude vahe korrutis. 2. Avaldage kahe täisarvu jagatisena a)0,(4); b)0,113(4); c)0,4(12); d)1,(8); e)0,3(5); f)2,3(154)....
mitterutiinseid ülesandeid); · teada saada, milline on gümnaasiumilõpetajate matemaatikaalane ettevalmistus õpingute jätkamiseks järgmisel haridusastmel. Eksami vorm Matemaatika riigieksami põhieksam on kahes variandis ja lisaeksam on ühes variandis. Matemaatika riigieksam (ja ka lisaeksam) on kaheosaline kirjalik eksam 1. osa kestus on 120 minutit ja 2. osa kestus on 150 minutit. Kahe eksamiosa vahel on 45 minutiline vaheaeg. Käesoleva õppeaasta matemaatika riigieksam toimub 4. mail 2010.a, algusega kell 10.00. Eksaminandidele, kes mõjuvatel põhjustel põhieksamil osaleda ei saa, korraldatakse lisaeksam 17. mail 2010.a, algusega kell 10.00. Eksami 1. osa ülesannetega kontrollitakse gümnaasiumi ainekursuste põhiteadmiste ja -oskuste omandatust ning oskust neid teadmisi ja oskusi rakendada elulistes situatsioonides. Eksami 2. osa ülesannetega kontrollitakse, kuivõrd struktureeritud on eksaminandi teadmised,...
Arvud, mis väljendavad risttahuka mõõtmeid moodustavad geomeetrilise jada. Risttahuka põhja pindala on 108 m² ja täispindala 888 m². Leia risttahuka mõõtmed. 2. Urnis on 5 musta, 7 kollast ja 4 punast palli. Leia tõenäosus, et juhuslikult võetud kolme palli hulgas on. 1) vähemalt 2 kollast palli; 2) Kõik erinevat värvi pallid; 3) kõik ühtevärvi pallid. 3. Leia kõik reaalarvude paarid (x;y), mis rahuldavad võrrandit 2 x +1 = 4 y 2 +1 ja võrratust 2 x 2 y . 4. Kahe positiivse arvu vahe moodustab 1/19 nende kuupide vahest, nend4e korrutis on aga ½ võrra väiksem nende ruutude poolsummast. Leia need arvud. 5. Lahenda võrrand 3sin 9 + 3 = 3 vahemikus (-2; 2). 6. Võrdkülgsesse kolmnurka küljega a on kujundatud teine võrdkülgne kolmnurk, mille tipud asuvad esimese kolmnurga külgedel jaotades need suhtes 1:2. Leia väiksema kolmnurga pindala. 7. Koonusekujulise veinik...
Antud on funktsioonid f(x) = logx ja g(x) = -1 1.1. Skitseeri ühes ja samas teljestikus nende funktsioonide graafikud; 1.2. Leia millistes punktides on nende funktsioonide väärtused võrdsed; 1.3. Leia milliste argumendi x väärtuste korral on funktsiooni f(x) väärtused väiksemad funktsiooni g(x) väärtustest; 1.4. Leia funktsiooni f(x) väärtus, kui x = 10 cos 4 2. On antud funktsioon y =x 3 -5x 2 . Leia selle funktsiooni 2.1. nullkohad; 2.2. positiivsus- ja negatiivsusvahemikud; 2.3. ekstreemumkohad, nende liik ning ekstreemumpunktid; 2.4. kasvamis- ja kahanemisvahemikud; 2.5. skitseeri selle funktsiooni graafik; 2.6. graafikule puutuja punktis, mille abstsiss on 5. 3. Antud on funktsioonid f(x) = sin2x ja g(x) = sinx. 3.1. lahenda võrrand f(x) = g(x) lõigul [0;2] ; 3.2. joonesta ühes ja samas teljestikus funktsioonide f(x) ja g(x) graaf...