Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Elementaarmatemaatika 1. teooria (0)

5 VÄGA HEA
Punktid

Esitatud küsimused

  • Kuidas võrrelda kompleksarve?
  • Millise arvuga tuleks arvu a astendada et saada arv x?
  • Miks viimane teadmine on eriti kasulik?
  • Milleks see viimane oluline?
  • Millal kasutatakse sõnaühendit "siis ja ainult siis"?
  • Millal öeldakse et on antud mõiste tunnus?
  • Miks on kõõlnelinurgad?
Vasakule Paremale
Elementaarmatemaatika 1-teooria #1 Elementaarmatemaatika 1-teooria #2 Elementaarmatemaatika 1-teooria #3 Elementaarmatemaatika 1-teooria #4 Elementaarmatemaatika 1-teooria #5 Elementaarmatemaatika 1-teooria #6 Elementaarmatemaatika 1-teooria #7 Elementaarmatemaatika 1-teooria #8 Elementaarmatemaatika 1-teooria #9 Elementaarmatemaatika 1-teooria #10 Elementaarmatemaatika 1-teooria #11 Elementaarmatemaatika 1-teooria #12 Elementaarmatemaatika 1-teooria #13 Elementaarmatemaatika 1-teooria #14 Elementaarmatemaatika 1-teooria #15 Elementaarmatemaatika 1-teooria #16 Elementaarmatemaatika 1-teooria #17 Elementaarmatemaatika 1-teooria #18
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 18 lehte Lehekülgede arv dokumendis
Aeg2014-01-05 Kuupäev, millal dokument üles laeti
Allalaadimisi 64 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Signesne Õppematerjali autor

Sarnased õppematerjalid

thumbnail
12
pdf

Matemaatika eksami teooria 10. klass

Matemaatika eksami teooria Reaalarvud 1.1. Naturaal-, täis- ja ratsionaalarvud · Naturaalarvude hulk N (ainult positiivsed täisarvud) · Naturaalarvu n vastandarv -n defineeritakse selliselt, et n+(-n)=0 · Naturaalarvud koos oma vastandarvudega moodustavad täisarvude hulga Z (jaguneb pos ja neg) · Iga kahe täisarvu vahe on alati täisarv · Kui arv a ei jagu arv b-ga, siis on tegemist murdarvuga. Kõik täisarvud ja positiivsed ning negatiivsed murdarvud

Matemaatika
thumbnail
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
thumbnail
89
docx

Matemaatiline maailmapilt

1. LOENG Sissejuhatus Lausearvutus: Teoreemid sõnastatakse tavaliselt kujul: ,,Kui A, siis B". Teoreemi osa A, mis on seotud sõnaga kui, nimetatakse teoreemi eelduseks, ja osa, mis on seotud sõnaga siis, väiteks. Näide: Kui kaks vektorit on risti, siis nende vektorite skalaarkorrutis on null. Näide: Kui nurgad on kõrvunurgad, siis nende summa on 180o. Teoreemi tõestamine tähendab selle näitamist, et eeldusest A järeldub väide B. Tõestamisel lähtutakse aksioomidest ja varem tõestatud teoreemidest. Vahetades teoreemis ,,Kui A, siis B" eelduse ja väite, saame lause ,,Kui B, siis A". Seda lauset nimetatakse antud lause pöördlauseks. Kui lause kehtib, siis selle lause pöördlause ei pruugi kehtida. Näide: Lause: ,,Kui arv lõpeb nulliga, siis ta jagub viiega" (kehtib). Pöördlause: ,,Kui arv jagub viiega, siis ta lõpeb nulliga" (ei kehti). Näide: Lause: ,,Kui kolmnurga kül

Matemaatika
thumbnail
9
pdf

8. klassi raudvara: PTK 3

3.ptk Defineerimine ja tõestamine 8.klass Õpitulemused Näited 1.Hulkade ühisosa - ühised elemendid; Ül.564 tähis ; NB tehe hulkadega 2.Hulkade ühend - hulk, millesse kuuluvad Ül.567 ühe hulga kõik elemendid ja teise hulga need elemendid, mis esimesse hulka ei kuulunud; tähis ; NB tehe hulkadega 3.Matemaatilised sümbolid - hulkade ühisosa matemaatikale iseloomulik hulkade ühend nn.kokkuleppeline keel, et teksti lühidalt element kuulub hulka kirja panna (võit ajas ja ruumis) element ei kuulu hulka sidesõna "ja" sidesõna "või" hulga osahulk, "ei ole osahulk" kriipsutatakse sama tähis läbi järeldusmärk

Matemaatika
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a 0 -a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-, a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse (a - , a] siis ja ainult siis, kui selle

Matemaatiline analüüs i
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

Sisujuht 16. Esimest liiki katkevuspunkt - niisugust katkevuspunkti, kus funktsioonil f on olemas ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. .....

Matemaatika
thumbnail
54
doc

Valemid ja mõisted

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega

Matemaatika
thumbnail
37
docx

Matemaatiline analüüs l.

Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suva

Matemaatiline analüüs




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun