Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

X klassi matemaatika lühikonspekt (0)

1 Hindamata
Punktid
Vasakule Paremale
X klassi matemaatika lühikonspekt #1 X klassi matemaatika lühikonspekt #2 X klassi matemaatika lühikonspekt #3 X klassi matemaatika lühikonspekt #4 X klassi matemaatika lühikonspekt #5
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 5 lehte Lehekülgede arv dokumendis
Aeg2014-12-03 Kuupäev, millal dokument üles laeti
Allalaadimisi 26 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor cido Õppematerjali autor

Sarnased õppematerjalid

thumbnail
5
doc

X klassi matemaatika lühikonspekt

X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1

Matemaatika
thumbnail
12
pdf

Matemaatika eksami teooria 10. klass

Matemaatika eksami teooria Reaalarvud 1.1. Naturaal-, täis- ja ratsionaalarvud · Naturaalarvude hulk N (ainult positiivsed täisarvud) · Naturaalarvu n vastandarv -n defineeritakse selliselt, et n+(-n)=0 · Naturaalarvud koos oma vastandarvudega moodustavad täisarvude hulga Z (jaguneb pos ja neg) · Iga kahe täisarvu vahe on alati täisarv · Kui arv a ei jagu arv b-ga, siis on tegemist murdarvuga. Kõik täisarvud ja positiivsed ning negatiivsed murdarvud moodustavad kokku ratsionaalarvude hulga Q. Ratsionaalarv on arv, mis avaldub jagatisena a/b, kus a Z, b Z ja b 0. · Iga ratsionaalarv avaldub lõpmatu perioodilise kümnendmurruna. 1.2 Irratsionaal- ja reaalarvud · Arv, mis avaldub lõpmatu mitteperioodilise kümnendmurruna, on irratsionaalarv. · Arvutamisel piirdutakse ligikaudsete väärtustega e lähenditega, nt pii=3,14 · Kuna iga ratsionaalarv avaldub lõpmatu perioo

Matemaatika
thumbnail
40
doc

Keskkooli matemaatika raudvara

KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ­...........................................................................................5 Täisarvude hulk Z.................................................................................................................5 Murdarvu

Matemaatika
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD 1. ARVUHULGAD …………………………………………………… 2 2. ARITMEETIKA ……………………………………………….…… 3 2.1 Mõningate arvude kõrgemad astmed ………………………….……. 3 2.2 Hariliku murru põhiomadus ………………………………….…….. 3 2.3 Tehetevahelised seosed ……………………………………….…….. 3 2.4 Tehted harilike murdudega ………………………………….……… 4 2.5 Tehete põhiomadused ……………………………………….……… 5 2.6 Näited tehete kohta positiivsete ja negatiivsete arvudega …….…….. 5 2.7 Näited tehete kohta ratsionaalarvudega ……………………….……. 6 2.8 Protsent ja promill ……………�

Matemaatika
thumbnail
8
pdf

Determinandid gümnaasiumiõpikus

DETERMINANDI MÕISTE. KAHEREALISE DETERMINANDI Avaldanud esimesest võrrandist x-i ja asendanud saadud tulemuse teise võr- KASUTAMINE VÕRRANDISÜSTEEMIDE LAHENDAMISEL randisse, saame c1 b1 y Paljude sisult erinevate probleemide lahendamine viib ühe ja sama seaduse a1 x b1 y c1 x , kui a1 0. järgi koostatud avaldisteni. Sel juhul on otstarbekas uurida nende avaldiste a1 üldisi omadusi. c b y° a2 ¡¡ 1 1 ±± b2 y c2 a1 korrutame võrrandi pooli a1-ga Üheks selliseks av

Matemaatika
thumbnail
53
ppt

Reaalarvud ( slaidid )

Julia Lissovskaja matemaatika õpetaja Tartu Kutsehariduskeskus 2010 Arvuhulgad Naturaalarvude hulk Täisarvude hulk Ratsionaalarvude hulk Reaalarvude hulk Naturaalarvude hulk Naturaalarvud on arvud 0, 1, 2, 3, 4, 5,..., n-1, n, n+1,... Naturaalarvude hulka tähistatakse tähega N Naturaalarvude hulga omadused Naturaalarve saab kujutada punktidena arvkiirel Naturaalarve saab järjestada 0 1 2 3 4 1. a = b; 2. a > b; 3. a < b Naturaalarvude hulk on lõpmatu Naturaalarvude hulk on kinnine liitmise ja korrutamise tehete suhtes Naturaalarvude hulk ei ole lahutamise ega jagamise tehete suhtes kinnine Naturaalarvud Paaris- ja paaritu arvud ­ arvuga 2 jaguvuse alusel Algarvud ja kordarvud - arvude jaguvuse alusel Algarv ­ ühest suuremat naturaalarvu, mis jagub

Matemaatika
thumbnail
5
docx

Lineaaralgebra Eksami küsimuste vastused

1. Kompleks arvude põhimõiste,põhilised definatsioonid. K.arvude liitmine,korrutamine,jagamine algebralisel kujul. DEF. k.arvuks nim. Arvufoori (a,b) kus a,bR. esitatakse z=a+bi (a-reaalosa,b- imaginaar osa,i- imaginaar ühik). Põhimõiste olgu z1=a1+b1i,z2=a2+b2i z1=z2 kui a1= a2 ja b1=b2, z=0 kui a=0 ja b=0,k-arvu z1=a1-b1i nim.kaas k-arvuks z1=a1+b1i. Arvutamine z1+z2= (a1+a2)+(b1+b2)i, z1-z2= (a1-a2)+(b1-b2), z1*z2= (a1+b1i)*(a2+b2), 2. K.geomeetriline kujutamine, trigonomeetriline kuju.korrutamine ja jagamine trigonomeetrilisel kujul. geomeetriline kujutamine k-arv/reaalarvu paar (a,b).saab k-arvu z=a+bi kujutada xy tasandil kus kordinaadid a-reaal osa, b- imaginaar osa ja vastavalt X-telg k-arvu reaal telg ja Y-telg ­ imaginaar telg.XY tasandi iga punkt M(x,y) ongi z=x+iy trigonomeetriline kuju tähistame nurk X-teljel ja vektori pikkus r ,siis a=rcos ja b=rcos.avaldist z=r(cos+isin) ongi trigonomeetriline kuju. Arvutamine z1*z2=

Lineaaralgebra
thumbnail
24
rtf

Lineaaralgebra eksam

1. Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3. liitmise suhtes leidub nullelement (reaalarv 0, 0 + z = z + 0 = z z C korral), st leidub C, nii et z + = + z = z z korral; = (0; 0) = 0 4. igal kompleksarvul z = (x; y) = x + yi leidub (liitmise suhtes) vastandarv, st selline arv w C, et z + w = w + z = 0; w = -z 5. korrutamine on kommutatiivne, st z1z2 = z2z1 z1, z2 C korral 6. korrutamine on assotsiatiivne, st (z1z2)z3 = z1(z2z3) z1, z2, z3 C korral

Lineaaralgebra




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun