suurused a ja b määrata: juhul x- seosest lim x- (f(x)-kx-b)=0 millest saame, 1 et k= lim x- f(x)/x ^ b= lim x-(f(x)-kx); *juhul x+ seosest lim x+ (f(x)-kx-b)=0, millest saame, et k=lim x+ f(x)/x ^ b= lim x+(f(x)-kx). Kui uuritaval juhul vaadeldavad piirväärtused suuruste k ja b leidmiseks eksisteerivad, siis eksisteerib kaldas., kui ei, siis mitte. 35. Määramata integraali omadused Selles punktis tõestame kolm määramata integraali omadust ja kasutame neid omadusi integreerimisel. Omadus 1. [ f ( x ) + g ( x )]dx = f ( x )dx + g ( x )dx , s.t. kahe funktsiooni summa määramata integraal on võrdne nende funktsioonide määramata integraalide summaga. Kaks määramata integraali on võrdsed, kui nad erinevad teineteisest ülimalt konstandi võrra ehk nende tuletised on võrdsed. Näitame seda. Võttes vasakult poolt tuletise, saame punkti 4.1
· Algebralised funktsioonid on funktsioonid, mis saadakse lõpliku arvu algebraliste tehte rakendamise teel. a. Täisratsionaalsed funktsioonid ehk astmefunktsioonid b. Murdratsionaalsed funktsioonid ehk kahe täisratsionaalse funktsiooni jagatis c. Irratsionaalsed funktsioonid ( sisaldavad lisaks eelnevale veel juurimist) d. Mittealgebralised funktsioonid Liitfunktsioon- on funktsioon, kus sõltuv muutuja y sõltub argumendist x mitme funktsiooni vaheldusel. Kui y=f(z) ja z=g(x) , seega saame liitfunktsiooni y=f(g(x)) . Liitfunktsioonil võib olla ka enam kui kaks koostisosa ja seega enam kui üks vahepealne muutuja. Pöördfunktsioon- pöördfunktsiooni saame, kui võtame algse funktsiooni , avaldame sealt x ja seejärel vahetame x ja y ära. Näiteks : y=2x ; x=0,5y ; y=0,5x , seega y=2x pöördfunktsioon on y=0,5x. Funktsiooni y = f(x) pöördfunktsiooniks nimetatakse funktsiooni y =( x )
"Matemaatiline analüüs I" Funktsioon Funktsioon- Kui muutja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Sõltumatu muutuja on x, sõltuv y Funktsiooni määramispiirkond-Funktsiooni y määramispiirkonnaks nimetakse argumendi x muutumispiirkonda. Funktsioonide liigid- 1. Paaris funktsioon-rahuldab tingimust f(x)=f(-x) ja see on sümmeetriline y-telje suhtes. (Nt:y=x2) 2.Paaritu funktsioon-rahuldab tingimust f(-x)=-f(x) ja see on sümmetrialine 0 punkti suhtes. (y=sinx) 3.Perioodilised funktsioonid- rahuldab tingimust f(x+T)=f(x), T on periood. 4
KÕRGEM MATEMAATIKA III Matemaatilise analüüsi elemendid 3. Määramata integraalid Õppekirjandus: [1] Abel, E., Kokk, K. Kõrgem matemaatika (Harjutusülesanded). EMS, Tartu, 2003. [2] Lõhmus, A., Petersen, I., Roos, H. Kõrgema matemaatika ülesannete kogu. "Valgus", Tallinn, 1982. [3] Loone, L., Soomer, V. Matemaatilise analüüsi algkursus. "TÜ Kirjastus", Tartu, 2006. [4] Tõnso, T., Veelmaa, A. Matemaatika XII klassile. "Mathema", Tallinn, 1995. [5] Piskunov, N. Diferentsiaal- ja integraalarvutus. "Valgus", Tallinn, 1981. 3
x a g( x ) g ' (c) c a g '( c) järeldub f ' (c ) f ( x ) = g ' (c) g ( x ) Kui xa, siis ca, sest c painkeb x ja a vahel. Järelikult lim f ' ( c ) lim f ' ( c ) f (x) x a x c =¿ = g(x) g ' (c ) g ' (c ) Muudame avaldise paremal poolel asuva piirväärtuse lim ¿ xa tähistust asendades muutuja c muutujaga x lim f ( x ) lim f ' ( x ) x a = xc Eelduse kohaselt eksisteerib valemi paremal poolel olev piirväärtus. g(x) g' (x) Järelikult eksisteerib ka vasakul pool olev piirväärtus. Teoreem on tõestatud. l'Hospitali reegel jääb kehtima ka siis, kui piirprotsessis xa asendada piirprotsessiga x või x-. 27. Kõrgemat järku tuletiste ja diferentsiaalide definitsioonid. Tuletada kõrgemat järku diferentsiaalide valemid.
2. x < a. Jällegi, Cauchy teoreemi põhjal leidub vahemikus (x,a) punkt c nii, et f(a) − f(x) /g(a) − g(x) = f’(c)/ g’(c) Kuna eelduse kohaselt f(a) = g(a) = 0, siis järeldub võrdus f(x)/ g(x) = f’(c)/ g’(c) . Kui x → a, siis c → a, sest c paikneb x ja a vahel. Järelikult lim x→a f(x) /g(x) = lim x→a f’(c)/ g’(c) = lim c→a f’(c)/ g’(c) Muudame avaldise paremal poolel asuva piirväärtuse lim c→a f’(c)/ g’(c) tähistust asendades seal muutuja c muutujaga x, st lim c→a f’(c)/ g’(c) asemel kirjutame lim x→a f’(x)/ g’(x). Tulemusena saame valemi . Eelduse kohaselt eksisteerib valemi paremal poolel olev piirväärtus lim x→a f’(x) /g’(x). Järelikult eksisteerib ka vasakul pool olev piirväärtus lim x→a f(x)/ g(x). Teoreem on tõestatud. 27. Kõrgemat järku tuletiste ja diferentsiaalide definitsioonid. Funktsiooni y = f(x) n-järku tuletiseks nimetatakse selle funktsiooni n − 1 - järku tuletise
a b avaldis =0 Funktsiooni F nimetatakse funktsiooni f algfunktsiooniks hulgas X, kui iga x X korral kehtib võrdus F '(x) = f(x). Avaldist kujul F(x) + C, kus F(x) on funktsiooni f(x) mingi algfunktsioon ja C on suvaline konstant (integreerimiskonstant), nim funktsiooni f(x) määramata integraaliks ja tähistatakse f ( x)dx = F ( x) +C Kui f-il f(x) leidub hulgal X algfunktsioon, siis f-il f(x) eksisteerib määramata integraal (hulgal X). Muutujate vahetus määramata integraalis: f(x)dx Integraali avaldamisel asendusvõttega tehakse selle integraali all muutuja vahetus. Selleks valitakse mingi funktsioon u = (x) ja integreerimine muutuja x järgi asendatakse integreerimisega muutuja u järgi. Eeldame, et on üks ühene ja diferentseeruv
Üksühese funktsiooni mõiste. Olgu antud funktsioon y = f(x). Vastavalt funktsiooni definitsioonile on tegemist kujutisega, mis seab igale argumendi x väärtusele oma määramispiirkonnast vastavusse ühe kindla y väärtuse. Uksühese funktsiooni pöördfunktsioon. Üksühese funktsiooni y = f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsiooni avaldise saame, kui lahendame võrrandi y = f(x) muutuja x suhtes. Vahetavad pöördfunktsioonis kohad esialgse funktsiooni määramispiirkond ja väärtuste hulk. Olgu x = g(y) üksühese funktsiooni y = f(x) pöördfunktsioon. Siis funktsioonid f ja g kompenseerivad teineteist järgmises mõttes. g[f(x)] = x , f[g(y)] = y . Funktsiooni y = f(x) ja tema pöördfunktsiooni x = g(y) graafikud kattuvad xy-teljestikus. Kui aga pöördfunktsiooni x = g(y) avaldises muutujate x ja y kohad vahetada, st esitada ta kujul y = g(x), siis
Kõik kommentaarid