Sisujuht 16. Esimest liiki katkevuspunkt - niisugust katkevuspunkti, kus funktsioonil f on olemas ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. .....
Funktsiooni z=f(x,y) osatuletist x järgi tähistatakse sümbolitega: z'x , f'x(x,y) , . Seega definitsiooni kohaselt: Analoogiliselt defineeritakse funktsiooni z=f(x,y) osatuletis y järgi funktsiooni osamuudu yz ja muudu y suhte piirväärtusena y lähenemisel nullile. Osatuletist y järgi tähistatakse sümbolitega z'y , f'y(x,y) , . Seega: Võime osatuletiste definitsioonid formuleerida ka järgmiselt: funktsiooni z=f(x,y) osatuletiseks x järgi nim. tema tuletist x järgi, mis arvutatakse eeldusel, et y on konstantne. Funktsiooni z=f(x,y) osatuletiseks y järgi nim
Lõigul pidev funktsioon saavutab oma suurima ja vähima väärtuse sellel lõigul. Lõigul pidev funktsioon saavutab sellel lõigul iga väärtuse oma suurima ja vähima väärtuse vahel. Kui funktsioon y = f(x) on pidev lõigul [a, b] ja omandab selle lõigu otspunktides erineva märgiga väärtusi, siis leidub sellel lõigul vähemalt üks punkt c, kus f(c) = 0 2. Kollokvium 1. Tuletise, diferentseeruva funktsiooni ja diferentsiaali mõisted. Argumendi x diferentsiaal. Tuletis. Funktsiooni y = f(x) muudu y ja argumendi muudu x suhte piirväärtus kohal x argumendi muudu lähenemisel 0 nimetatakse selle funktsiooni tuletiseks kohal x ja x lim x 0 y tähistatakse y', f'(x) või st: y' = Kui viimane piirväärtus on lõplik, siis funktsioon y = f(x) on diferentseeruv kohal x.
Majandusmatemaatika teooria 1.Mis on funktsioon? Kui hulga X igale elemendile x on seatud vastavusse kindel element y hulgast Y, siis öeldakse, et hulgal X on defineeritud funktsioon. Mis on sõltumatu muutuja, sõltuv muutuja? Elementi x nimetatakse sõltumatuks muutujaks ehk argumendiks, elementi y sõltuvaks muutujaks ehk (elemendi x) kujutiseks. Sõltumatu muutuja - algebra: Valemis iga muutuja, mille väärtus ei sõltu ühestki teisest muutujast. statistika: Muutuja, mida eksperimentide seeria käigus muudetakse. Sõltuv muutuja - algebra: Valemis muutuja, mille väärtus sõltub ühest või enamast teisest muutujast. statistika: Mõõdetav suurus, mis näitab kohtlemise efektiivsust. 2. Mis on funktsiooni määramispiirkond? Hulka X nimetatakse funktsiooni määramispiirkonnaks, määramispiirkond on funktsiooni argumendi nende väärtuste hulk, mille korral funktsiooni väärtus on defineeritud. Funktsiooni f sisendväärtuste hulka X nimetatakse funkts
Trigonometriliste funktsioonide määramispiirkonnad ja väärtuste hulgad: y = sin x : X = R, Y = [-1, 1] , y = cos x : X = R, Y = [-1, 1] , y = tan x : X = R {(2k + 1)/2 * || k Z},Y = R, y = cot x : X = R {k || k Z}, Y = R. Graafikud. Funktsioonid y = sin x ja y = cos x on perioodilised perioodiga 2 ning y = tan x ja y = cot x perioodiga . Funktsioonid y = sin x, y = tan x ja y = cot x on paaritud ning y = cos x paaris. 4. Üksühese funktsiooni ja pöördfunktsiooni definitsioonid. Seosed funktsiooni ja tema pöördfunktsiooni määramispiirkondade ja väärtuste hulkade vahel, vastastikune kompenseerimine, funktsiooni ja pöördfunktsiooni graafikute omavaheline seos. Logaritmfunktsioon ja tema määramispiirkond, väärtuste hulk ning graafik. Arkusfunktsioonid ja nende seosed trigonomeetriliste funktsioonide ahenditega. Arkusfunktsioonide määramispiirkonnad, väärtuste hulgad ja graafikud. Üksühese funktsiooni mõiste. Olgu antud funktsioon y = f(x)
MITME MUUTUJ A FUNKTSIOON. PIIRV ÄÄRTUS. DIFERENTSEERIMINE Mitme muutuja funktsioon Mitme muutuja funktsiooni üldkuju: w = f ( x, y , z ,...) ( x, y, z ,...) D Kahe puntki vaheline kaugus: Puntkide P1 = ( x1 , y1 , z1 ,...) ja P2 = ( x2 , y 2 , z 2 ,...) vaheliseks kauguseks nimetatakse reaalarvu d ( P1 , P2 ) = ( x1 - x2 ) 2 + ( y1 - y2 ) 2 + ( z1 - z 2 ) 2 + ... . Punkti -ümbrus: Olgu mingi arv. Punkti P0 = ( x0 , y0 , z 0 ,...) -ümbruseks U ( P0 ) nim. kõigi selliste punktide P = ( x, y , z ,...) hulka, mille kaugused punktist P0 on väiksemad kui , s.t d ( P, P0 ) = ( x - x0 ) 2 + ( y - y0 ) 2 + ( z - z0 ) 2 + ... < . Hulga sisepunkt: Punkti P0 D nim. hulga D sisepunktiks kui leidub punkti P0 selline -ümbrus, mis kuulub hulka D, s.t U ( P0 ) D . Hulga rajapunkt: Punkti P0 nim. hulga D rajapunktiks, kui igas punkti P
Reaalarvu a absoluutväärtuseks nim mittenegatiivset reaalarvu IaI, mis on defin seosega IaI=a, kui a0,,-a, kui a0 Arvu a ümbruseks, kus > 0, nimetatakse hulka U(a)={xIa-x} Reaalarvu a parempoolseks ümbruseks, kus > 0, nimetatakse hulka [a; a + ) = {xIax+a} Suuruse + M-ümbruseks, kus M > 0, nimetatakse vahemikku (M;+). Kui M > 0, siis M-ümbruseks nim ühendit (-;-M) ja(M) Muutuvat suurust nimetatakse tõkestatuks, kui leidub niisugune konstant M0, et kõik muutuva suuruse väärtused, alates mingist x M väärtusest, täidavad tingimust - M x M , s.t. . FUNKTSIOON:. . Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Esitusviisid: Tabel, Analüütilisel kujul esitatud funktsiooni määramispiirkonnaks nimetatakse argumendi kõigi väärtuste hulka, mille korral see valem on määratud.; F.gaafikuks nim punktihulka Ku
"Matemaatiline analüüs I" Funktsioon Funktsioon- Kui muutja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Sõltumatu muutuja on x, sõltuv y Funktsiooni määramispiirkond-Funktsiooni y määramispiirkonnaks nimetakse argumendi x muutumispiirkonda. Funktsioonide liigid- 1. Paaris funktsioon-rahuldab tingimust f(x)=f(-x) ja see on sümmeetriline y-telje suhtes. (Nt:y=x2) 2.Paaritu funktsioon-rahuldab tingimust f(-x)=-f(x) ja see on sümmetrialine 0 punkti suhtes. (y=sinx) 3.Perioodilised funktsioonid- rahuldab tingimust f(x+T)=f(x), T on periood. 4.Ilmutatud funktsioon- funktsioon, kus esitatava võrdsuse vasakul pool on ainult sõltuv muutuja y ja paremal muutujast x sõltuv avaldis. 5. Ilmutamata funktsioon- funktsioon, mille väärtused leitakse x ja y siduvast võrrandist. 6.Ühesed funktsioonid- nimetakse sellist fuktsooni, kus argumendi ühele väärtusele on seatud vastavusse ainult üks funktsio
Kõik kommentaarid