Ilmutamata funktsiooni tuletis F (x,y) = 0 = x dx Fy z F z Fy F (x,y,z) = 0 = x = x Fz y Fz 2 z 2 z 2 z Teist järku diferentsiaal d z =dx 2 + 2 dxdy + 2 dy 2 2 x 2 xy y u u u u u Suunatuletis = cos + cos + cos = grad u cos s x y z s z z u u u u
( sin y ) y cos y cos y = 1 - sin 2 y = 1 - x 2 ( arcsin x ) = 1 2 1- x Diferentsiaal ja muut, erinevus, sarnasus Kui funktsioonil y=f(x) on punktis x lõplik tuletis y'=f'(x), siis on funktsiooni muut f, mis vastab argumendi muudule x, esitatav kujul y=f'(x)x+(x), ja vastupidi. Avaldist f'(x)x nim funktsiooni y=f(x) diferentsiaaliks ja tähistatakse sümboliga df=f'(x)x. on lõpmata väike arv. Seega on funktsiooni diferentsiaal funktsiooni muudu osa, mis on lineaarne argumendi muudu suhtes ja erineb funktsiooni muudust suuruse võrra, mis on kõrgemat järku lõpmatult kahanev suurus muudu suhtes. Geomeetriliselt kujutab diferentsiaal funktsiooni graafiku puutuja ordinaadi muutu. Et argumendi diferentsiaal võrdub argumendi muuduga s.o dx=x, ja funktsiooni diferentsiaal on kujul dy=f'(x)dx siis dy/dx=f'(x). Seega võrdub funktsiooni tuletis funktsiooni diferentsiaali ja argumendi jagatisega.
Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a I FUNKTSIOONID Tõkestatud hulgad Ülalt ja alt tõkestatud hulgad Olgu X mingi reaalarvude hulk. Definitsioon: Kui leidub niisugune reaalarv M , et hulga X iga elemendi x puhul kehtib võrratus x M , siis öeldakse, et hulk X on ülalt tõkestatud, kusjuures arvu M nimetatakse hulga X ülemiseks tõkkeks. Ülalt tõkestatud hulga X elemendid paiknevad seega lõpmatus poollõigus (- , M ] . Definitsioon: Kui leidub niisugune reaalarv m , et hulga X iga elemendi x puhul kehtib võrratus x m , siis öeldakse, et hulk X on alt tõkestatud, kusjuures arvu m nimetatakse hulga X alumiseks tõkkeks. Alt tõkestatud hulga X elemendid paiknevad seega lõpmatus poolllõigus [m, ) . Definitsioon: Hulka X nimetatakse tõkestatud hulgaks, kui X on ülalt ja alt tõkestatud. Tõkestatud hulga X elemendid paiknevad lõigus [m
MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega
.. + f xm (P )xm nimetatakse funktsiooni f (esimest järku e. esimeseks) täisdiferentsiaaliks punktis P . Siin = 1 x1 + ... + m x m = o( ) , kus = d (P, Q ) ehk lim = 0. 0 Olgu z = f ( x1 ,..., x m ) = xi 1 i m . Siis df = dxi = ( xi ) xi xi = 1 xi = xi . Järelikult dxi = xi ehk argumendi diferentsiaal on võrdne argumendi muuduga. Täisdiferentsiaali sagedasem kuju: df = f x1 (P )dx1 + ... + f xm (P )dxm . Liidetavaid f xi (P )dxi i = 1, ..., m nimetatakse funktsiooni f osadiferentsiaalideks punktis P . Kahe muutuja funktsiooni täisdiferentsiaali geomeetriline tähendus Geomeetriliselt tähendab funktsiooni f täisdiferentsiaal funktsiooni f graafiku puutujatasandi aplikaadi (e. z-koordinaadi) muutu. Tõestus.
14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33. Funktsioonide ex , sin x ja cos x arendid Maclaurini valemi j¨argi 34. Funktsiooni kasvamine ja kahanemine 35. Funktsiooni lokaalsed ekstreemumid 36. Funktsiooni suurim ja v¨ahim v¨a¨artus antud l~oigul 37. Funktsiooni graafiku kumerus ja n~ogusus
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62 iii
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62 iii
Kõik kommentaarid