Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

KÕIK Kollokvium II kohta. 1.10-1.16 (0)

1 Hindamata
Punktid

Lõik failist

1.10 Funktsiooni tuletis
DEF 1.Funktsiooni y=f(x) tuletiseks kohal x nim. funktsiooni y=f(x) muudu ∆y ja argumendi muudu ∆x suhte piirväärtust, kui argumendi muut läheneb nullile .
f´(x)=lim∆y/∆x, piirprotsessis ∆x->0
DEF 2. Kui funktsioonil f(x) on tuletis kohal x, siis öeldakse, et funktsioon on diferentseeruv punktis x.
Ǝf´(x0) f(x) € D(x0)
DEF 3. Funktsiooni y=f(x) parempoolseks tuletiseks kohal x nim. suurust
f´(x+)=lim∆y/∆x, piirprotsessis ∆x->0+
DEF 4. Funktsiooni y=f(x) vasakpoolseks tuletiseks kohal x nim. suurust
f´(x-)=lim∆y/∆x, piirprotsessis ∆x->0-
Funktsiooni tuletis: Lause 1. Funktsiooni f(x) diferentseeruvusest punktis x järeldub selle funktsiooni pidevus punktis x,st
Tõestus. Funktsiooni diferentseeruvus punktis x tähendab, et .
Kuna igas mingis punktis on piirväärtust omav suurus selle punkti teatud ümbruses esitatav piirväärtuse ja lõpmata väikese suuruse summana, siis , kusjuures . Seos on esitatav ka kujul , kusjuures suurus
on piirprotsessis
kõrgemat järku lõpmata väike võrreldes suurusega , sest
ning sellest saab järeldada, et
ja st, et
Lause 2. Kui funktsioonid f(x) ja g(x) on diferentseeruvad puntis x ja
on konstant, siis selles punktis on diferentseeruvad ka funktsioonid cf(x),
ja täiendaval eeldusel
ka f(x)/g(x), kusjuures
Tõesta neid. Kerge.
1.11 Liitfunktsiooni tuletis. Pöördfunktsiooni tuletis.
KÕIK Kollokvium II kohta-1 10-1 16 #1 KÕIK Kollokvium II kohta-1 10-1 16 #2 KÕIK Kollokvium II kohta-1 10-1 16 #3 KÕIK Kollokvium II kohta-1 10-1 16 #4 KÕIK Kollokvium II kohta-1 10-1 16 #5
Punktid 100 punkti Autor soovib selle materjali allalaadimise eest saada 100 punkti.
Leheküljed ~ 5 lehte Lehekülgede arv dokumendis
Aeg2011-12-22 Kuupäev, millal dokument üles laeti
Allalaadimisi 78 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor rix2 Õppematerjali autor

Sarnased õppematerjalid

thumbnail
2
docx

Kollokvium II

1.10 Funktsiooni tuletis DEF 1.Funktsiooni y=f(x) tuletiseks kohal x nim. funktsiooni y=f(x) muudu y ja argumendi muudu x suhte piirväärtust, kui argumendi muut läheneb nullile. f´(x)=limy/x, piirprotsessis x->0 DEF 2. Kui funktsioonil f(x) on tuletis kohal x, siis öeldakse, et funktsioon on diferentseeruv punktis x. f´(x0) <->f(x) D(x0) DEF 3. Funktsiooni y=f(x) parempoolseks tuletiseks kohal x nim. suurust f´(x+)=limy/x, piirprotsessis x->0+ DEF 4. Funktsiooni y=f(x) vasakpoolseks tuletiseks kohal x nim. suurust f´(x-)=limy/x, piirprotsessis x->0- 1.11 Liitfunktsiooni tuletis. Pöördfunktsiooni tuletis. Parameetriliselt esitatud funktsiooni tuletis. Ilmutamata funktsiooni tuletis. Logaritmiline diferentseerimine. Vaata näiteid vihikust! 1.12 Põhiliste elementaarfunktsioonide tuletised. 1.13 Kõrgemat järku tuletised DEF 1. Kui funktsioonil f´(x) eksisteerib tuletis, siis seda tuletist nim. funktsiooni y=f(x) teiseks tuletiseks ehk teist järku tuletiseks ja tähista

Matemaatiline analüüs
thumbnail
6
doc

Matemaatiline analüüs I, 2. kollokviumi spikker

1. Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning summa tuletis on tuletiste summa. Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Tõestus:Korrutise tuletisest y’=f’(x)g(x)+f(x)g’(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on Tõepoolest, valem kehtib juhul n=1. y’=f(x)*c’+f ’(x)*c=0*f(x)+c*f ’(x)=c*f ’(x) Nüüd tuleb näidata induktsioonisamm: eeldame, et valem kehtib juhul n-1 ja näitame, et sel juhul kehtib ta Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on ka n korral. Seega kehtib: diferentseeruv ka funktsioon y=f(x)+g(x) Tõestus: y=f(x)+g(x) esmalt, toimides sammhaaval, tehes eraldi tehetena komponendid,saame

Matemaatiline analüüs 1
thumbnail
4
pdf

Matemaatiline analüüs I teine teooria

  Def:Funktsiooni  y=f(x) tuletiseks kohal x nimetatakse funktsiooni y=f(x) muudu Δy ja argumendi muudu  Δx  suhte piirväärtust, kui argumendi  muut läheneb nullile.  Def:​ Kui funktsioonil f(x) on tuletis punktis x, siis öeldakse, et funktsioon on ​ diferentseeruv​  punktis x.  Def:  Geomeetriliselt  võib  funktsiooni  y=f(x)  ​ interpreteerida  kui  selle  funktsiooni  graafikule  punktis  (x;   f(x))  konstrueeritud  tõusunurga  tangensit.   Def: ​ Funktsiooni y=f(x) ​parempoolseks tuletiseks​  kohal x nimetatakse suurust  f ´(x +) = lim Δy Δx  Δ→0+ Δy Def: ​ Funktsiooni y=f(x) ​ vasakpoolseks tuletiseks​

Matemaatiline analüüs
thumbnail
11
doc

Kollokvium II

konstrueeritud puutuja allpool funktsiooni graafikut ja teisel pool punkti a on puutuja ülalpool funktsiooni graaikut ning punkt a on käänupunkt. 20).Joone asümptoodid Kui joone y = f(x) punkti P kaugenemisel lõpmatusse punkti P kaugus mingist sirgest läheneb tõkestamatult nullile, siis seda sirget nimetatakse selle joone asümptoodiks. · vertikaalasümptoodid x = a; Joone y=f(x) püstasümptoodide leidmiseks tuleb leida joone kõik teist liiki katkevuspunktid ning leida neis funktsiooni ühepoolsed piirväärtused. · kaldasümptoodid y = kx + b, kus Kaldasümptoodide leidmiseks tuleb suurused a ja b määrata juhul ning seejärel asetada nad antud võrdusesse. (y=ax+b)

Matemaatika analüüs i
thumbnail
2
odt

Matemaatiline analüüs I, II kollokviumi spikker

1. Funktsiooni diferentseeruvuse geomeetriline tõlgendus. 11. Kumerus, nõgusus, käänupunktid. Seos teist järku tuletisega. Funktsiooni diferentsiaal on kõverjoonele y = f(x) tõmmatud puutuja ordinaadi muut, mis vastab Oeldakse, et funktsiooni f(x) graafik on kumer punktis a (tapsemini punktis (a, f(a))), kui leidub punkti a argumendi numbrile x=dx. selline -umbrus, et funktsiooni f(x) graafik on argumendi x väärtustel ümbrusest (a - , a + ) allpool 2. Funktsiooni kõrgemat järku tuletised. (tapsemini, mitte ulalpool) puutujat, mis on tõmmatud punktis (a, f(a)) funktsiooni graafikule. Oeldakse, et funktsiooni f(x) graafik on kumer hulgal X, kui sellefunktsiooni graafik

Matemaatiline analüüs
thumbnail
10
docx

Matemaatiline analüüs I

1. Sõnastada ja tõestada piirväärtusteoreem kahe funktsiooni summa piirväärtuse arvutamiseks protsessis x +. Teoreem (1): Kahe, kolme, üldiselt lõpliku hulga muutuvate suuruste algebralise summa piirväärtus võrdub nende muutuvate suuruste piirväärtuste algebralise summaga. lim(u1 + u2 +....) = lim u1 + lim u2 + ... Tõestus: Tõestan teoreemi kahe funktsiooni liitmise korral. Olgu lim f(x) = A ja lim g(x) = B (Vaatlen mõlemaid protsesse piirprotsessis x +) Teoreem (1) põhjal võib kirjutada lim x + f(x) + g(x) = lim x + f(x) + lim x + g(x) Eeldame, et liidetavaid on lõplik arv. Tugineb lvs omadusele. Lvs (lõpmata väike suurus) omadus: lim(x+) f(x) = A, kui iga > 0 korral leidub selline arv N, et iga x > N korral on I

Matemaatiline analüüs
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

Funktsiooni pidevus. Ühepoolsed piirväärtused, Moodustame integraalsumma katkevuspunktid. Teoreemid lõigul pideva funktsiooni Definitsioon Funktsiooni y=f(x) määratud integraaliks lõigul kohta. [a,b] nimetatakse piirväärtust 6. Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. x/2=arctan t ; x=2arctan t ; dx=2/1+t 2dt 7

Matemaatiline analüüs
thumbnail
10
docx

Kordamisküsimusi 3. teema kohta - Teooriatöö II

Kordamisküsimusi 3. teema kohta 1. Defineerida funktsiooni tuletis. Mis on diferentseeruv funktsioon ja diferentseerimine? Funktsiooni f tuletiseks punktis a nimetatakse järgmist suurust: f ( x )−f (a) f ' ( a )=lim x→ a x−a Kui funktsioon f omab punktis a lõplikku tuletist, siis öeldakse et ta on selles punktis diferentseeruv. Tuletise arvutamist nimetatakse diferentseerimiseks. 2

Matemaatika analüüs i




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun