Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ukraina abi Ukraina kaitse vajab abi. Tee annetus täna! Aita Ukrainat Sulge
Add link

Kategooria rakendusstatistika - 64 õppematerjali

Matemaatika >> Rakendusstatistika
10
docx

Rakendusstatistika arvutusgraafiline töö nr. 1

Rakendusstatistika arvutusgraafilise töö andmed ja lahenduse kontrollelemendid MHT/2010 3 9 7 4 7 7 Üliõpilane: Üliõpilaskood: Lahenduse esitamiskuupäev: 3.2.2011 Andmete kood: Andmed Andmed-A: valim A mahuga N=25 (arvkarakteristikud, jaotuse analüüs, dispersioonanalüüs) 91 96 79 95 10 39 69 38 40 5 0 96 24 22 75 79 82 86 91 74 75 25 12 71 85 Andmed-B: valimid B1 ja B2 (regressioonimudeli leidmine ja analüüs) xi 2,8 2,2 4,0 1,1 5,1 yi 6,9 6,1 9,8 7,2 15,3 Valim B1: Paarisvalim (xi, yi) regressioonimudeli leidmiseks (mahuga N=5) Valim B2: Korduskatsete sari väljundi dispersiooni leidmiseks (mahuga w=7) 1,3 0,2 0,7 4,2 3,6 2,6 1,9 Lah...

Rakendusstatistika - Tallinna Tehnikaülikool
469 allalaadimist
25
xlsx

Rakendusstatistika arvutusgraafiline kodutöö (excel fail)

45,04 Keskväärtus 45 ül4 1 Dispersioon 1167,833 1164,123 intervalli nr vahemik 4 Mediaan 38 1 0-20 6 Haare 97 2 20-40 7 t-statistik -0,706614 3 40-60 10 50 4 60-80 11 5 80-100 12 1,7108820799 15 20 10 Histogra 25 0,4780363352 9 27 0,4168338365 8 33 1,710882 7 38 36,41503 6 46 13,84843 5 52 1164,123 62...

Rakendusstatistika - Tallinna Tehnikaülikool
572 allalaadimist
5
docx

Põhimõisted rakendusstatistika eksamiks

Statistika üldiseks eesmärgiks on: asjakohastest eeldustest lähtudes leida vaadeldava stohhastilise objekti kohta mingi tõenäosuslik mudel, sh hinnates mudeli arvparameetreid ja kontrollides erinevaid hüpoteese objekti mudeli kohta. Mediaani hinnang: - kasvavalt järjestatud valimi keskelement (kui valimi maht on paaritu arv) - kasvavalt järjestatud valimi keskelementide poolsumma (kui valimi maht on paarisarv) Haare: valimi suurima ja vähima elemendi vahe Statistika põhiteoreem: Empiiriline jaotusfunktsioon FN(x) on teoreetilise (üldkogumi) jaotusfunktsiooni F(x) nihutamata ja mõjus hinnang. Histogramm: Histogramm on enimkasutatav (üldkogumi) jaotustiheduse hinnang. Histogrammi kasutatakse ettekujutuse saamiseks üldkogumi jaotusseadusest ning ta kujutab endast tulpdiagrammi, mille tulpade kõrgused näitavad vastavasse vahemikku sattumise sagedust. 2-jaotus on kasutusel normaaljaotusega juhusliku suuruse dispersiooni hinnangu jaoks usaldusvahemike arvu...

Rakendusstatistika - Tallinna Tehnikaülikool
529 allalaadimist
15
xls

Rakendusstatistika kodutöö

15 12 33 95 10 87 25 1 62 52 98 94 62 46 11 71 79 75 24 91 40 71 96 12 82 4 6 96 38 27 7 74 20 96 69 86 10 80 25 91 74 85 22 5 39 0 38 75 95 79 xi ni xi*ni ni*xi2 ni*(xi-xk)2 0 0 1 0 0 2132,59 1 1 1 1 1 2041,23 3 3 1 3 9 1864,51 4 4 1 4 16 1779,15 7 7 1 7 49 1535,07 8 8 1 8 64 1457,71 10 10 2 20 200 2617,98 10 13 3 39 507 3302,74 13 15 1 15 225 972,19 13 20 2 40 800 1370,78 13 22 2 44...

Rakendusstatistika - Tallinna Tehnikaülikool
199 allalaadimist
40
xlsx

Rakendusstatistika arvutusgraafline töö 2

Aine Rakendusstatistika MHT0031 Arvestusharjutus AGT-2 Nimi xxx Kood Rühm Imiteerimisvalemi kood TRAP S0 0,25 A 7 T0 4 B 6 LS 0,25 D 2 LT 1 n1 n2 n3 n4 n5 n6 1 0 3 6 3 0 A 7 B 6 D 2 T0 4 S0 0,25 U1 0,82262 U2 0,684927 D=2 1. T0=4 S0=0,25 Y=g(X)=sign(X)D1-T|X|T x y Teisendusfunktsiooni y=sign(x)D1-T|x|T graafik baasväärtuste -10 0,00 -9 0,00 0 -8 0,00 -7 0,00 0 -6 0,00 -5 0,00...

Rakendusstatistika - Tallinna Tehnikaülikool
272 allalaadimist
16
doc

Rakendusstatistika arvutsgraafiline töö 1 (AGT1)

...

Rakendusstatistika - Tallinna Tehnikaülikool
149 allalaadimist
13
doc

Rakendusstatistika kodutöö

nxi ni xi*ni ni*xi2 ni*(xi-xk)2 2 1 2 4 2512,01 6 1 6 36 2127,05 7 1 7 49 2035,81 12 1 12 144 1609,61 17 1 17 289 1233,41 18 4 72 1296 4656,70 20 1 20 400 1031,69 22 1 22 484 907,21 27 2 54 1458 1262,03 29 1 29 841 534,53 31 1 31 961 446,05 34 1 34 1156 328,33 36...

Rakendusstatistika - Tallinna Tehnikaülikool
401 allalaadimist
16
doc

Rakendusstatistika kodutöö

Hinnangud, usaldusvahemikud, statistilised hüpoteesid ja jaotused xi ni xi*ni ni*xi2 ni*(xi-xk)2 0 1 0 0 2907,37 6 1 6 36 2296,33 7 1 7 49 2201,49 8 2 16 128 4217,29 9 1 9 81 2017,81 12 1 12 144 1757,29 13 2 26 338 3348,89 18 1 18 324 1290,25 23 1 23 529 956,05 24 1 24 576 895,21...

Rakendusstatistika - Tallinna Tehnikaülikool
325 allalaadimist
14
xlsx

Rakendusstatistika kodutöö excel

1 0 0,04 1 0 0,2 2 2 0,08 2 2 0,4 3 7 0,12 3 7 0,6 4 10 0,16 4 10 0,8 5 15 0,2 5 15 6 28 0,24 6 28 7 29 0,28 7 29 8 30 0,32 8 30 9 31 0,36 9 31 10 32 0,4 10 32 11 32 0,44 11 42 12 42 0,48 12 46 13 46 0,52 13 47 14 47 0,56...

Rakendusstatistika - Tallinna Tehnikaülikool
222 allalaadimist
9
docx

Rakendusstatistika arvutusgraafiline kodutöö

RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A Valimi A mahuga N=25 variatsioonirida: 12 6 11 62 20 62 7 98 10 1 52 27 80 25 94 46 38 74 95 33 71 15 96 4 87 1.Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x=45, 04 Dispersioon: Excel: VAR Sx²=1164,123 Standardhälve: Sx=34,1193 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Me=38 Haare: R=97 2. Leida keskväärtuse ja dispersiooni usaldusvahemikud (eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0.10). Keskväärtuse usaldusvahemik: = 0,10 t0,1; 24= 1,711 (Studenti tabelist) Dispersiooni usaldusvahemik: = 0,10...

Rakendusstatistika - Tallinna Tehnikaülikool
338 allalaadimist
8
docx

Rakendusstatistika kokkuvõte

Katse on mingi tingimuste kompleksi realiseerumine. Elementaarsündmused on mingid üksteist välistavad sündmused, millest iga katse korral üks tingimata toimub. Juhuslikud sündmused: *vastastikku välistuvad sündmused- ei sisalda samu elementaarsündmusi *vastastikku mittevälistuvad sündmused- sisaldavad samu elementaarsündmusi *sündmuste sisalduvus- kui toimub A, toimub ka B *vastansündmus- kõik elementaarsündmused, mis ei sisaldu sündmuses Tõenäosus iseloomustab sündmuse esinemissagedust katsetes. Tõenäousese määramisviisid: klassikalised(kombinatoorne, geomeetriline, statistiline), mtteklassikalised(subjektiivne,intersubjektiivne) Juhuslikuks suuruseks nim suurust, mis järjekordse katse tulemusel omandab mingi mittennustatava väärtuse mingist võimalikust väärtuste hulgast. Diskreetne juhuslik suurus: võimalike väärtuste hulk on lõplik Pidev juhuslik suurus: võimelike väärtust...

Rakendusstatistika - Tallinna Tehnikaülikool
293 allalaadimist
10
doc

Arvutusgraafiline rakendusstatistika kodutöö

Hindame valimi parameetreid Hindamiseks kasutame järgmised valemid: Keskväärtus: 44,12 Dispersioon: 673,44 Standardhälve: 25,95 Mediaani ja haarde leidmiseks teeme valimi liikmete ümberjärjestuse: Mediaan: 51 Haare: 92-4= 88 2. Leiame keskväärtuse ja dispersiooni usaldusvahemikud (usaldusnivoo = 0,10), eeldades üldkogumi normaaljaotust Keskväärtuse jaoks kasutame t-statistikut f = N ­ 1 = 24 t0,95(24) = 1,7109 = 8,88 (poollaius) P(35,24 < < 53) = 0,9 Dispersiooni jaoks kasutame 2-statistikut f = N ­ 1 = 24 20.95(24) = 36,415 20.05(24) = 13,848 P (443,9 < 2 < 1167,15) = 0,9 3. Kontrollime hüpoteese keksväärtuse ja dispersiooni kohta, eeldades üldkogumi normaaljaotust, ja kasutades usaldusnivood = 0,10 3.1 H0: = 50; H1: 50 Kontrollimiseks kasutame t-statistikut: t = ­ 1,1329 f = N ­ 1 = 24 Kriitiline t-statistiku väärtus t0,95(24) = 1,711 Kuna t < tkr, siis võtame hüpotee...

Rakendusstatistika - Tallinna Tehnikaülikool
137 allalaadimist
27
xlsx

Arvutusgraafiline rakendusstatistika kodutöö exel

i xi N 25 1 71 Keskväärtus 44,12 2 43 Dispersioon 673,44333333 3 56 Standardhälve 25,950786758 4 17 Mediaan 51 5 56 Haare 88 6 9 7 29 8 24 0,1 9 33 t1-/2 0,95 10 4 f (vabadusaste) 24 11 53 12 51 t1-/2(f) (t kvantiil) 1,7109 13 80 (poollaius) 8,8798 14 36 15 54 Keskväärtuse usaldusvah. 16 84 alumine ülemi...

Rakendusstatistika - Tallinna Tehnikaülikool
194 allalaadimist
13
docx

Rakendusstatistika AGT-1

RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A Valim A mahuga N=25 variatsioonirida: 69 10 76 79 84 41 15 87 44 49 38 16 58 7 24 19 82 1 40 38 35 87 51 1 69 1. Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x = 44,80 Dispersioon: Excel: VAR Sx² = 814,417 Standardhälve: Excel: STDEV Sx = 28,538 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Excel: MEDIAN Me = 41 Haare:...

Rakendusstatistika - Tallinna Tehnikaülikool
135 allalaadimist
12
docx

Rakendusstatistika arvutusgraafiline töö

RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A Valimi A mahuga N=25 variatsioonirida: 22 96 91 75 74 75 25 79 12 38 95 10 71 0 79 24 86 91 96 5 40 85 69 82 39 1.Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x=58,36 Dispersioon: Excel: VAR Sx²=1072,74 Standardhälve: Excel: STDEV Sx=32,75 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Excel: MEDIAN Me=74 Haare: =96-0=96 R=96 2. Leida keskväärtuse ja dispersiooni usaldusvahemikud (eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0.10). Keskväärtuse usaldusvahemik:...

Rakendusstatistika - Tallinna Tehnikaülikool
65 allalaadimist
11
docx

Rakendusstatistika kodune töö 2012

Xxxxx xxxxx xxxx MHT 0031 RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A 1. 1) Keskväärtus =46,20 2)Dispersioon =867,92 3)Standardhäve =29,46 4)Mediaan Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Me=46 5)Haare R = xmax ­ xmin = 99 ­ 0 = 99 2. Leian keskväärtuse usaldusvahemiku eeldusel, et põhikogumi jaotus on normaaljaotus ja olulisus...

Rakendusstatistika - Tallinna Tehnikaülikool
71 allalaadimist
15
docx

Rakendusstatistika konspekt

Leian 1.1 keskväärtuse 1 N µ^ = x = xi = 46, 2 N i =1 Excel: AVERAGE 1.2 dispersiooni 1 N ^ 2 = s 2 = ( xi - x )2 = 867,9 N - 1 i =1 Excel: VAR 1.3 standardhälbe sx = sx2 = 29, 46 Excel: STDEV 1.4 mediaani Me = 46 Excel: MEDIAN 1.5 haarde R = xmax - xmin = 99 - 0 = 99 2. Eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0,10, leian 2.1 keskväärtuse usaldusvahemikud P ( x - µ < µ < x + µ ) = p s 29, 46 µ = t1- ( f ) = 1, 7109 = 10, 29 2 N 24 Student'i teguri leidsin tabelist. P (46, 2 - 10, 29 < µ < 46, 2...

Rakendusstatistika -
78 allalaadimist
30
xlsx

Rakendusstatistika AGT-1

04 Keskväärtus 45 ül4 1 Dispersioon 1167.833 1164.123 intervalli 4 Mediaan 38 1 6 Haare 97 2 7 t-statistik -0.706614 3 10 μ 50 4 11 5 12 1.7108820667 15 20 25 0.4780363352 10 H 27 0.4168338365 9 33 1.710882 8 38 36.41503 7 46 13.84843 52 1164.123 6 62 34.11925 5 62 4 71 74 3 80 2 87...

Rakendusstatistika - Tallinna Tehnikaülikool
18 allalaadimist
0
jpg

Rakendusstatistika arvestus v88

Rakendusstatistika arvestus variant 88...

Rakendusstatistika - Tallinna Tehnikaülikool
265 allalaadimist
11
docx

Rakendusstatistika kodutöö AGT1

Osa A Andmed: 7 2 3 3 1 1 4 3 3 3 6 5 6 1 2 9 7 5 7 8 5 2 4 1 8 7 9 7 4 8 5 3 1 9 3 5 9 5 8 4 6 1 3 0 7 6 9 1. Valimi parameetrite hindamine. Kasutan järgmisi valemeid: Keskväärtus: 44,28 Dispersioon: 772,46 Standardhälve: 27,79 Mediaani ja haarde leidmiseks teeme valimi liikmete ümberjärjestust: 1; 2; 5; 14; 18; 19; 25; 27; 31; 33; 37; 39; 39; 45; 46; 50; 56; 63; 65; 71; 74; 77; 83; 89; 98 Mediaan: 39 Haare: 98 ­ 1 = 97 2. Leian keskväärtuse ja dispersiooni usaldusvahemikud (usaldusnivoo = 0.10), eeldades üldkogumi normaaljaotust Keskväärtuse jaoks kasutame t-statistikut f = N ­ 1 = 24 t0.95(24) = 1.711 = 9.51 Keskväärtuse usaldusvahemik arvutatakse valemiga: P(34,77 < < 53,79) = 90% Dispersiooni usaldusvahemiku leidmiseks kasutatakse 2-statistikut f = N ­ 1 = 24 P (509,...

Rakendusstatistika - Tallinna Tehnikaülikool
56 allalaadimist


Registreeri ja saadame uutele kasutajatele
faili e-mailile TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun