Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Kategooria rakendusstatistika - 64 õppematerjali

Matemaatika >> Rakendusstatistika
thumbnail
10
docx

Rakendusstatistika arvutusgraafiline töö nr. 1

Rakendusstatistika arvutusgraafilise töö andmed ja lahenduse kontrollelemendid MHT/2010 3 9 7 4 7 7 Üliõpilane: Üliõpilaskood: Lahenduse esitamiskuupäev: 3.2.2011 Andmete kood: Andmed Andmed-A: valim A mahuga N=25 (arvkarakteristikud, jaotuse analüüs, dispersioonanalüüs) 91 96 79 95 10 39 69 38 40 5 0 96 24 22 75 79 82 86 91 74 75 25 12 71 85 Andmed-B: valimid B1 ja B2 (regressioonimudeli leidmine ja analüüs) xi 2,8 2,2 4,0 1,1 5,1 yi 6,9 6,1 9,8 7,2 15,3 Valim B1: Paarisvalim (xi, yi) regressioonimudeli leidmiseks (mahuga N=5) Valim B2: Korduskatsete sari väljundi dispersiooni leidmiseks (mahuga w=7) 1,3 0,2 0,7 4,2 3,6 2,6 1,...

Rakendusstatistika
470 allalaadimist
thumbnail
25
xlsx

Rakendusstatistika arvutusgraafiline kodutöö (excel fail)

45,04 Keskväärtus 45 ül4 1 Dispersioon 1167,833 1164,123 intervalli nr vahemik 4 Mediaan 38 1 0-20 6 Haare 97 2 20-40 7 t-statistik -0,706614 3 40-60 10 50 4 60-80 11 5 80-100 12 1,7108820799 15 20 10 Histogra 25 0,4780363352 9 27 0,4168338365 8 33 1,710882 7 38 36,41503 6 46 13,84843 5 52 1164,123 62...

Rakendusstatistika
572 allalaadimist
thumbnail
5
docx

Põhimõisted rakendusstatistika eksamiks

Statistika üldiseks eesmärgiks on: asjakohastest eeldustest lähtudes leida vaadeldava stohhastilise objekti kohta mingi tõenäosuslik mudel, sh hinnates mudeli arvparameetreid ja kontrollides erinevaid hüpoteese objekti mudeli kohta. Mediaani hinnang: - kasvavalt järjestatud valimi keskelement (kui valimi maht on paaritu arv) - kasvavalt järjestatud valimi keskelementide poolsumma (kui valimi maht on paarisarv) Haare: valimi suurima ja vähima elemendi vahe Statistika põhiteoreem: Empiiriline jaotusfunktsioon FN(x) on teoreetilise (üldkogumi) jaotusfunktsiooni F(x) nihutamata ja mõjus hinnang. Histogramm: Histogramm on enimkasutatav (üldkogumi) jaotustiheduse hinnang. Histogrammi kasutatakse ettekujutuse saamiseks üldkogumi jaotusseadusest ning ta kujutab endast tulpdiagrammi, mille tulpade kõrgused näitavad vastavasse vahemikku sattumise sagedust. 2-jaotus on kasutusel normaaljaotusega juhusliku suuruse dispersiooni hinnangu jaoks usaldu...

Rakendusstatistika
535 allalaadimist
thumbnail
15
xls

Rakendusstatistika kodutöö

15 12 33 95 10 87 25 1 62 52 98 94 62 46 11 71 79 75 24 91 40 71 96 12 82 4 6 96 38 27 7 74 20 96 69 86 10 80 25 91 74 85 22 5 39 0 38 75 95 79 xi ni xi*ni ni*xi2 ni*(xi-xk)2 0 0 1 0 0 2132,59 1 1 1 1 1 2041,23 3 3 1 3 9 1864,51 4 4 1 4 16 1779,15 7 7 1 7 49 1535,07 8 8 1 8 64 1457,71 10 10 2 20 200 2617,98 10 13 3 39 507 3302,74 13 15 1 15 225 972,19 13 20 2 40 800 1370,78 13 22 2 44...

Rakendusstatistika
199 allalaadimist
thumbnail
40
xlsx

Rakendusstatistika arvutusgraafline töö 2

Aine Rakendusstatistika MHT0031 Arvestusharjutus AGT-2 Nimi xxx Kood Rühm Imiteerimisvalemi kood TRAP S0 0,25 A 7 T0 4 B 6 LS 0,25 D 2 LT 1 n1 n2 n3 n4 n5 n6 1 0 3 6 3 0 A 7 B 6 D 2 T0 4 S0 0,25 U1 0,82262 U2 0,684927 D=2 1. T0=4 S0=0,25 Y=g(X)=sign(X)D1-T|X|T x y Teisendusfunktsiooni y=sign(x)D1-T|x|T graafik baasväärtuste -10 0,00 -9 0,00 0 -8 0,00 -7 0,00 0 -6 0,00 -5 0,00...

Rakendusstatistika
272 allalaadimist
thumbnail
16
doc

Rakendusstatistika arvutsgraafiline töö 1 (AGT1)

...

Rakendusstatistika
149 allalaadimist
thumbnail
13
doc

Rakendusstatistika kodutöö

nxi ni xi*ni ni*xi2 ni*(xi-xk)2 2 1 2 4 2512,01 6 1 6 36 2127,05 7 1 7 49 2035,81 12 1 12 144 1609,61 17 1 17 289 1233,41 18 4 72 1296 4656,70 20 1 20 400 1031,69 22 1 22 484 907,21 27 2 54 1458 1262,03 29 1 29 841 534,53 31 1 31 961 446,05 34 1 34 1156 328,33 36...

Rakendusstatistika
401 allalaadimist
thumbnail
16
doc

Rakendusstatistika kodutöö

Hinnangud, usaldusvahemikud, statistilised hüpoteesid ja jaotused xi ni xi*ni ni*xi2 ni*(xi-xk)2 0 1 0 0 2907,37 6 1 6 36 2296,33 7 1 7 49 2201,49 8 2 16 128 4217,29 9 1 9 81 2017,81 12 1 12 144 1757,29 13 2 26 338 3348,89 18 1 18 324 1290,25 23 1 23 529 956,05 24 1 24 576 895,21...

Rakendusstatistika
325 allalaadimist
thumbnail
14
xlsx

Rakendusstatistika kodutöö excel

1 0 0,04 1 0 0,2 2 2 0,08 2 2 0,4 3 7 0,12 3 7 0,6 4 10 0,16 4 10 0,8 5 15 0,2 5 15 6 28 0,24 6 28 7 29 0,28 7 29 8 30 0,32 8 30 9 31 0,36 9 31 10 32 0,4 10 32 11 32 0,44 11 42 12 42 0,48 12 46 13 46 0,52 13 47 14 47 0,56...

Rakendusstatistika
222 allalaadimist
thumbnail
9
docx

Rakendusstatistika arvutusgraafiline kodutöö

RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A Valimi A mahuga N=25 variatsioonirida: 12 6 11 62 20 62 7 98 10 1 52 27 80 25 94 46 38 74 95 33 71 15 96 4 87 1.Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x=45, 04 Dispersioon: Excel: VAR Sx²=1164,123 Standardhälve: Sx=34,1193 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Me=38 Haare: R=97 2. Leida keskväärtuse ja dispersiooni usaldusvahemikud (eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0.10). Keskväärtuse usaldusvahemik: = 0,10 t0,1; 24= 1,711 (Studenti tabelist) Dispersiooni usaldusvahemik:...

Rakendusstatistika
338 allalaadimist
thumbnail
8
docx

Rakendusstatistika kokkuvõte

Katse on mingi tingimuste kompleksi realiseerumine. Elementaarsündmused on mingid üksteist välistavad sündmused, millest iga katse korral üks tingimata toimub. Juhuslikud sündmused: *vastastikku välistuvad sündmused- ei sisalda samu elementaarsündmusi *vastastikku mittevälistuvad sündmused- sisaldavad samu elementaarsündmusi *sündmuste sisalduvus- kui toimub A, toimub ka B *vastansündmus- kõik elementaarsündmused, mis ei sisaldu sündmuses Tõenäosus iseloomustab sündmuse esinemissagedust katsetes. Tõenäousese määramisviisid: klassikalised(kombinatoorne, geomeetriline, statistiline), mtteklassikalised(subjektiivne,intersubjektiivne) Juhuslikuks suuruseks nim suurust, mis järjekordse katse tulemusel omandab mingi mittennustatava väärtuse mingist võimalikust väärtuste hulgast. Diskreetne juhuslik suurus: võimalike väärtuste hulk on lõplik Pidev juhuslik suur...

Rakendusstatistika
294 allalaadimist
thumbnail
10
doc

Arvutusgraafiline rakendusstatistika kodutöö

Hindame valimi parameetreid Hindamiseks kasutame järgmised valemid: Keskväärtus: 44,12 Dispersioon: 673,44 Standardhälve: 25,95 Mediaani ja haarde leidmiseks teeme valimi liikmete ümberjärjestuse: Mediaan: 51 Haare: 92-4= 88 2. Leiame keskväärtuse ja dispersiooni usaldusvahemikud (usaldusnivoo = 0,10), eeldades üldkogumi normaaljaotust Keskväärtuse jaoks kasutame t-statistikut f = N ­ 1 = 24 t0,95(24) = 1,7109 = 8,88 (poollaius) P(35,24 < < 53) = 0,9 Dispersiooni jaoks kasutame 2-statistikut f = N ­ 1 = 24 20.95(24) = 36,415 20.05(24) = 13,848 P (443,9 < 2 < 1167,15) = 0,9 3. Kontrollime hüpoteese keksväärtuse ja dispersiooni kohta, eeldades üldkogumi normaaljaotust, ja kasutades usaldusnivood = 0,10 3.1 H0: = 50; H1: 50 Kontrollimiseks kasutame t-statistikut: t = ­ 1,1329 f = N ­ 1 = 24 Kriitiline t-statistiku väärtus t0,95(24) = 1,711 Kuna t < tkr, sii...

Rakendusstatistika
137 allalaadimist
thumbnail
27
xlsx

Arvutusgraafiline rakendusstatistika kodutöö exel

i xi N 25 1 71 Keskväärtus 44,12 2 43 Dispersioon 673,44333333 3 56 Standardhälve 25,950786758 4 17 Mediaan 51 5 56 Haare 88 6 9 7 29 8 24 0,1 9 33 t1-/2 0,95 10 4 f (vabadusaste) 24 11 53 12 51 t1-/2(f) (t kvantiil) 1,7109 13 80 (poollaius) 8,8798 14 36 15 54 Keskväärtuse usaldusvah. 16 84 alumine...

Rakendusstatistika
194 allalaadimist
thumbnail
13
docx

Rakendusstatistika AGT-1

RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A Valim A mahuga N=25 variatsioonirida: 69 10 76 79 84 41 15 87 44 49 38 16 58 7 24 19 82 1 40 38 35 87 51 1 69 1. Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x = 44,80 Dispersioon: Excel: VAR Sx² = 814,417 Standardhälve: Excel: STDEV Sx = 28,538 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Excel: MEDIAN Me = 41 Haare:...

Rakendusstatistika
135 allalaadimist
thumbnail
12
docx

Rakendusstatistika arvutusgraafiline töö

RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A Valimi A mahuga N=25 variatsioonirida: 22 96 91 75 74 75 25 79 12 38 95 10 71 0 79 24 86 91 96 5 40 85 69 82 39 1.Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x=58,36 Dispersioon: Excel: VAR Sx²=1072,74 Standardhälve: Excel: STDEV Sx=32,75 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Excel: MEDIAN Me=74 Haare: =96-0=96 R=96 2. Leida keskväärtuse ja dispersiooni usaldusvahemikud (eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0.10). Keskväärtuse usaldusvahemik...

Rakendusstatistika
65 allalaadimist
thumbnail
11
docx

Rakendusstatistika kodune töö 2012

Xxxxx xxxxx xxxx MHT 0031 RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A 1. 1) Keskväärtus =46,20 2)Dispersioon =867,92 3)Standardhäve =29,46 4)Mediaan Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Me=46...

Rakendusstatistika
71 allalaadimist
thumbnail
15
docx

Rakendusstatistika konspekt

Leian 1.1 keskväärtuse 1 N µ^ = x = xi = 46, 2 N i =1 Excel: AVERAGE 1.2 dispersiooni 1 N ^ 2 = s 2 = ( xi - x )2 = 867,9 N - 1 i =1 Excel: VAR 1.3 standardhälbe sx = sx2 = 29, 46 Excel: STDEV 1.4 mediaani Me = 46 Excel: MEDIAN 1.5 haarde R = xmax - xmin = 99 - 0 = 99 2. Eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0,10, leian 2.1 keskväärtuse usaldusvahemikud P ( x - µ < µ < x + µ ) = p s 29, 46 µ = t1- ( f ) = 1, 7109 = 10, 29 2 N 24 Student'i teguri leidsin tabelist. P (46, 2 - 10, 29 < µ <...

Rakendusstatistika
78 allalaadimist
thumbnail
30
xlsx

Rakendusstatistika AGT-1

04 Keskväärtus 45 ül4 1 Dispersioon 1167.833 1164.123 intervalli 4 Mediaan 38 1 6 Haare 97 2 7 t-statistik -0.706614 3 10 μ 50 4 11 5 12 1.7108820667 15 20 25 0.4780363352 10 H 27 0.4168338365 9 33 1.710882 8 38 36.41503 7 46 13.84843 52 1164.123 6 62 34.11925 5 62 4 71 74 3 80 2 87...

Rakendusstatistika
18 allalaadimist
thumbnail
0
jpg

Rakendusstatistika arvestus v88

docstxt/12537266063011.txt...

Rakendusstatistika
265 allalaadimist
thumbnail
11
docx

Rakendusstatistika kodutöö AGT1

Osa A Andmed: 7 2 3 3 1 1 4 3 3 3 6 5 6 1 2 9 7 5 7 8 5 2 4 1 8 7 9 7 4 8 5 3 1 9 3 5 9 5 8 4 6 1 3 0 7 6 9 1. Valimi parameetrite hindamine. Kasutan järgmisi valemeid: Keskväärtus: 44,28 Dispersioon: 772,46 Standardhälve: 27,79 Mediaani ja haarde leidmiseks teeme valimi liikmete ümberjärjestust: 1; 2; 5; 14; 18; 19; 25; 27; 31; 33; 37; 39; 39; 45; 46; 50; 56; 63; 65; 71; 74; 77; 83; 89; 98 Mediaan: 39 Haare: 98 ­ 1 = 97 2. Leian keskväärtuse ja dispersiooni usaldusvahemikud (usaldusnivoo = 0.10), eeldades üldkogumi normaaljaotust Keskväärtuse jaoks kasutame t-statistikut f = N ­ 1 = 24 t0.95(24) = 1.711 = 9.51 Keskväärtuse usaldusvahemik arvutatakse valemiga: P(34,77 < < 53,79) = 90% Dispersiooni usaldusvahemiku leidmiseks kasutatakse 2-statistikut f = N ­ 1 =...

Rakendusstatistika
56 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun