Osa A. Hinnangud, usaldusvahemikud, statistilised hüpoteesid ja jaotused xi ni xi*ni ni*xi2 ni*(xi-xk)2 0 1 0 0 2907,37 6 1 6 36 2296,33 7 1 7 49 2201,49 8 2 16 128 4217,29 9 1 9 81 2017,81 12 1 12 144 1757,29 13 2 26 338 3348,89 18 1 18 324 1290,25 23 1 23 529 956,05 24 1 24 576 895,21 26 2 52 1
1. Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Jr x i− ´x i ¿2 k N x i−´x i ¿ nr 1 1 -43,28 1873,158 2 2 -42,28 1787,598 3 5 -39,28 1542,918 4 14 -30,28 916,8784 5 18 -26,28 690,6384 6 19 -25,28 639,0784 7 25 -19,28 371,7184 8 27 -17,28 298
Korrastatud variatsioonirida: 1; 6; 7; 8; 9; 12; 13; 18; 19; 23; 24; 26; 26; 33; 34; 35; 35; 38; 39; 39; 41; 44; 44; 45; 45; 45; 46; 47; 48; 48; 48; 54; 56; 58; 58; 58; 59; 60; 61; 62; 66; 68; 68; 69; 71; 71; 74; 75; 76; 77; 80; 86; 88; 89; 89; 90; 94; 94; 97; 99. Eksete hindamine 𝑥3 −𝑥1 Min 𝑅𝑙𝑜𝑤 = 𝑥 = 0.06452 < 0.265 𝑛−2 −𝑥1 𝑥𝑛 −𝑥𝑛−2 Max 𝑅ℎ𝑖𝑔ℎ = 𝑥𝑛 −𝑥3 = 0.05435 < 0.265 DCRIT(0.05; 60)= 0.265 Järeldus: Eksed puuduvad, sest nii Rlow kui ka Rhigh on väiksemad kui DCRIT. Tõenäosus, et partiis n=60 esineb vähemalt 2 erinevat väärtust 𝑣äℎ𝑒𝑚𝑎𝑙𝑡 2 𝑒𝑟𝑖𝑛𝑒𝑣𝑎 𝑎𝑟𝑣𝑢 𝑒𝑠𝑖𝑛𝑒𝑚𝑖𝑠𝑒 ℎ𝑢𝑙𝑘 46 𝑃(𝑣äℎ𝑒𝑚𝑎𝑙𝑡 2 𝑒𝑟𝑖𝑛𝑒𝑣𝑎𝑡 𝑎𝑟?
Rakendusstatistika arvestusharjutus AGT-1 (Andmete kood: 38 42 36) OSA A 1. Leida keskväärtuse, dispersiooni, standarthälbe, mediaani ja haarde hinnangud Keskväärtus N 1 ´x = N ∑ xi i=1 ´x =53,24 Dispersioon N 1 s x 2= ∑ N−1 i=1 ( x i−´x )2 s x 2 =705,69 Standardhäve s x =√ s x 2 s x =26,56 Mediaan Me=51 Haare R = xmax – xmin = 94 – 9 = 85 2. Keskväärtuse μ usaldusvahemik eeldusel, et põhikogumi jaotus on normaaljaotus ja olulisuse nivoo = 0,10: sx s ( P ´x −t α , N−1 ∙ √N ) < μ< ´x +t α , N −1
64; 1; 64; 40; 66; 66; 57; 13; 30; 49; 0; 68; 22; 73; 98; 20; 71; 45; 32; 95; 7; 70; 61; 22; 30; 84; 20; 89; 29; 32; 62; 55; 78; 55; 76; 11; 68; 71; 44; 98; 83; 52; 99; 54; 40; 32; 52; 48; 96; 62; 46; 31; 88; 73; 4; 61; 68; 75; 53; 31 Osa A. Hinnangud, usaldusvahemikud, statistilised hupoteesid ja jaotused. Korrastada algandmed arvreaks suuruse jargi ning hinnata eksed tabel 1 xi ni ni*xi ni*xi2 ni(xi-x)2 0 1 0 0 2816,0711 1 1 1 1 1 2710,93778 4 1 4 16 2407,53778 7 1 7 49 2122,13778 11 1 11 121 1769,60444 13 1 13 169 1605,33778 20 2 40 800 2186,80889 22 2
n= 60 Andmed (165): Väärtus (xi) Kordusi (ni) ni*xi ni*xi^2 1 1 1 1 1 6 6 1 6 36 7 7 1 7 49 8 8 1 8 64 9 9 1 9 81 12 12 1 12 144 13 13 1 13 169 18 18 1 18 324 19 19 1 19 361 23 23 1 23 529 24 24 1 24 576 26 26 2 52 1352 26 33 1 33 1089 33 34
Variant 23 0, 1, 4, 5, 6, 7, 10, 10, 11, 12, 12, 15, 20, 22, 24, 25, 25, 26, 27, 27, 31, 33, 38, 38, 39, 40, 43, 44, 44, 45, 46, 48, 52, 52, 55, 56, 56, 62, 62, 65, 69, 71, 71, 71, 74, 74, 75, 75, 79, 79, 80, 82, 85, 86, 87, 91, 91, 95, 96, 98 Dixon-test Rlow=(x3-x1)/(xn-2-x1), n=60 -> Rlow=(4-0)/(95-0)=4/95=0,042 < Dkr=0,35 Rhigh=(xn-xn-2)/(xn-x3) = (98-95)/(98-4)=3/94=0,0319 Osa A. Hinnangud, usaldusvahemikud, statilised hüpoteesid ja jaotused Tabel 1. Valim xi-juhuslik arv, ni xi kordumiste arv n=60 xmin=0 , xmax=98 xi ni ni*xi ni*xi2 ni(xi-x)2 2282,92 0 1 0 0 84 2188,36 1 1 1 1 84 1916,68 4 1 4 16 84 1830,12 5 1 5 25
RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A 1. Valim mahuga N = 25 jrk ni xi ni * xi ni * 2088, 1 1 2 2 2089,25 49 1909, 2 1 4 4 1910,42 69 1656, 3 1 7 7 1657,17 49 1576, 4 1 8 8 1576,75 09 1497, 5 1 9 9 1498,34 69 1204, 6 1 13 13 1204,67 09 882,0 7 1 18 18 882,59 9 561,6 8 1 24 24 562,09 9
Kõik kommentaarid