Rakendusstatistika arvutusgraafilise töö andmed ja lahenduse kontrollelemendid MHT/2010 Üliõpilane: Üliõpilaskood: Lahenduse esitamiskuupäev: Andmete kood: Andmed Andmed-A: valim A mahuga N=25 (arvkarakteristikud, jaotuse analüüs, dispersioonanalüüs) 16 35 38 49 51 69 1 69 19 87 3 44 24 84 7 41 41 10 79 15 87 82 5 76 1 8 8 Andmed-B: valimid B1 ja B2 (regressioonimudeli leidmine ja analüüs) xi 4,0 1,0 5,0 3,0 2,0 yi 0,1 5,5 0,2 1,2 3,5 Valim B1: Paarisvalim (xi, yi) regressioonimudeli leidmiseks (mahuga N=5) Valim B2: Korduskatsete sari väljundi dispersiooni leidmiseks (mahuga w=7) 3,3 2,0 4,6 3,9 3,0 2,7 6,3 Lahenduse kontrollelemendid Ülesanne/alamülesanne 1 Keskväärtus: Dispersioon:814,0567 Standardhälve:28,53 Mediaan: Me = 41 Haare: 2
Korrastatud variatsioonirida: 1; 6; 7; 8; 9; 12; 13; 18; 19; 23; 24; 26; 26; 33; 34; 35; 35; 38; 39; 39; 41; 44; 44; 45; 45; 45; 46; 47; 48; 48; 48; 54; 56; 58; 58; 58; 59; 60; 61; 62; 66; 68; 68; 69; 71; 71; 74; 75; 76; 77; 80; 86; 88; 89; 89; 90; 94; 94; 97; 99. Eksete hindamine 𝑥3 −𝑥1 Min 𝑅𝑙𝑜𝑤 = 𝑥 = 0.06452 < 0.265 𝑛−2 −𝑥1 𝑥𝑛 −𝑥𝑛−2 Max 𝑅ℎ𝑖𝑔ℎ = 𝑥𝑛 −𝑥3 = 0.05435 < 0.265 DCRIT(0.05; 60)= 0.265 Järeldus: Eksed puuduvad, sest nii Rlow kui ka Rhigh on väiksemad kui DCRIT. Tõenäosus, et partiis n=60 esineb vähemalt 2 erinevat väärtust 𝑣äℎ𝑒𝑚𝑎𝑙𝑡 2 𝑒𝑟𝑖𝑛𝑒𝑣𝑎 𝑎𝑟𝑣𝑢 𝑒𝑠𝑖𝑛𝑒𝑚𝑖𝑠𝑒 ℎ𝑢𝑙𝑘 46 𝑃(𝑣äℎ𝑒𝑚𝑎𝑙𝑡 2 𝑒𝑟𝑖𝑛𝑒𝑣𝑎𝑡 𝑎𝑟
45.04 Keskväärtus 45 ül4 1 Dispersioon 1167.833 1164.123 intervalli 4 Mediaan 38 1 6 Haare 97 2 7 t-statistik -0.706614 3 10 μ 50 4 11 5 12 1.7108820667 15 20 25 0.4780363352 10 H 27 0.4168338365 9 33 1.710882 8 38 36.41503 7 46 13.84843 52 1164.123 6 62 34.11925 5 62 4 71 74 3 80 2 87 1 94
Kursus A Õpilase nr 1 2 3 4 5 6 7 8 9 Testi tulemus 13 16 20 18 11 0 16 14 16 Kursus B Õpilase nr 1 2 3 4 5 6 7 8 9 Testi tulemus 19 17 9 15 17 20 18 6 18 Piirid Sagedus Piirid 4 2 4 8 2 8 12 6 12 16 10 16 20 11 20 Jääk 0 Jääk 10 11 12 13 14 15 16 17 18 19 20 21 22 23 7 12 19 20 17 14 10 19 14
15 12 33 95 10 87 25 1 62 52 98 94 62 46 11 71 79 75 24 91 40 71 96 12 82 4 6 96 38 27 7 74 20 96 69 86 10 80 25 91 74 85 22 5 39 0 38 75 95 79 xi ni xi*ni ni*xi2 ni*(xi-xk)2 0 0 1 0 0 2132,59 1 1 1 1 1 2041,23 3 3 1 3 9 1864,51 4 4 1 4 16 1779,15 7 7 1 7 49 1535,07 8 8 1 8 64 1457,71 10 10 2 20 200 2617,98 10 13 3 39 507 3302,74 13 15 1 15 225 972,19 13 20 2 40 800 1370,78 13 22 2 44 968 1169,34 15 24 1
RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A Valim A mahuga N=25 variatsioonirida: 69 10 76 79 84 41 15 87 44 49 38 16 58 7 24 19 82 1 40 38 35 87 51 1 69 1. Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x = 44,80 Dispersioon: Excel: VAR Sx² = 814,417 Standardhälve: Excel: STDEV Sx = 28,538 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Excel: MEDIAN Me = 41 Haare: R = 87
Osa A 2 i xi ( x i−´x ) 1 1 1921,946 2 1 1921,946 3 7 1431,866 4 10 1213,826 5 15 890,4256 6 16 831,7456 7 19 667,7056 8 24 434,3056 9 35 96,8256 10 38 46,7856 11 38 46,7856 12 41 14,7456 13 41 14,7456 14 44 0,7056 15 49 17,3056 16 51 37,9456 17 58 173,1856 18 69 583,7056 19 69 583,7056 20 76 970,9456 21 79 1166,906 22 82 1380,866 23 84 1533,506 24 87 1777,466 25 87 1777,466 ∑ 1121 19537,36 1. Selle valimi: ∑ xi ni = Keskväärtus: μ= n ∑ xi pi=44,84 N 1 1 Hinnang: ^μ= x´ = N ∑ x i= 25 ∙ 1121=44,8 i =1
OSA A 1. Leian 1.1 keskväärtuse 1 N µ^ = x = xi = 46, 2 N i =1 Excel: AVERAGE 1.2 dispersiooni 1 N ^ 2 = s 2 = ( xi - x )2 = 867,9 N - 1 i =1 Excel: VAR 1.3 standardhälbe sx = sx2 = 29, 46 Excel: STDEV 1.4 mediaani Me = 46 Excel: MEDIAN 1.5 haarde R = xmax - xmin = 99 - 0 = 99 2. Eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0,10, leian 2.1 keskväärtuse usaldusvahemikud P ( x - µ < µ < x + µ ) = p s 29, 46 µ = t1- ( f ) = 1, 7109 = 10, 29 2 N 24 Student'i teguri leidsin tabelist. P (46, 2 - 10, 29 < µ < 46, 2 + 10, 29) = 1 - 0,10
Kõik kommentaarid