osa 1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. Mitmem~ o~ otmelise ruumi definitsioon. Hulka, mille elementideks on k~oik m reaalarvust koosnevad j¨arjestatud s¨ usteemid (a1 , a2 , . . . , am ), nimetatakse m- m~o~ otmeliseks ruumiks, s¨ usteemi A = (a1 , a2 , . . . , am ) selle ruumi punktiks ja arve a1 , a2 , . . . , am punkti A koordinaatideks. m-m~ o~ otmelist ruumi t¨ahistame umboliga Rm . s¨ Ruumi Rm punkte A = (a1 , a2 , . . . , am ) ja B = (b1 , b2 , . . . , bm ) nimetatakse v~ ordseteks ja kirjutatakse A = B, kui nende koordinaadid on v~ordsed, st a1 = b1 , a2 = b2 , . . . , am = bm . Nullpunktiks ehk koordinaatide alguspunktiks ruumis Rm nimetatakse punkti O = (0, 0, . . . , 0). Kaugus ruumis Rm . Olgu ruum...
1 1. Arvrea mõiste. Arvrea osasumma ja koonduvus. Näiteid koonduvate ja hajuvate arvridade kohta. Geomeetrilise rea osasumma ja summa valemite tuletamine....................................... 2 2. Integraaltunnus. Näidata, mis tingimustel rida ja vastav päratu ingegraal koonduvad samaaegselt. Muutujavahetus päratus integraalis ()............................................................... 3 3. Positiivsete arvridade võrdlustunnused. Üks tunnustest tuletada........................................ 3 4. D'Alemberti ja Cauchy tunnused. Üks neist tuletada........................................................... 4 6. Vahelduvate märkidega read. Leibnizi tunnus..................................................................... 5 5. Arvridade absoluutne ja tingimisi koonduvus. Absoluutselt k...
,Hn, otsekorrutiseks e Cartesiuse korrutiseks H1x...xHn nim kõigi järjendite (h1...hn), kus hkHk (k=1,...,n), hulka. Järjendit nim ka korteeziks. Kui Hk=H (k=1,...,n), siis n teguri, millest igaüks on H, otsekorrutise H x...x H jaoks kasutatakse ka tähistust Hn Aritmeetiliseks punktruumiks Rn nimetatakse otsekorrutist Rn, kus R tähistab reaalarvude hulka. Aritmeetiliseks vektorruumiks Rn nimetatakse hulka Rn, mille elementidel on defineeritud liitmine ja arvuga korrutamine järgmiselt: (x1,...,xn)+(y1,...,yn)=(def) (x1+y1,...,xn+yn), (x1,...,xn)=(def) (x1,...,xn), kus (x1,...,xn), y1,...,yn) Rn ja R Ruumi Rn punktide p(x1,...,xn) ja Q(y1,...,yn) vaheliseks kauguseks nim arvu d(P,Q)= ( x1 - y1) 2 + ... + ( xn - yn) 2 . Vektorruumi Rn vektorite x=(x1,...,xn) ja y=(y1,..,yn) skalaarkorrutiseks nim arvu x*y=x1y1+...+xnyn Vektorruumi Rn nullvektorist erinevate vektorite x=(x1,...,xn) ja y=(y1,...,yn) vahelise nurga koosinuse...
1 1. Arvrea mõiste. Arvrea osasumma ja koonduvus. Näiteid koonduvate ja hajuvate arvridade kohta. Geomeetrilise rea osasumma ja summa valemite tuletamine....................................... 2 2. Integraaltunnus. Näidata, mis tingimustel rida ja vastav päratu ingegraal koonduvad samaaegselt. Muutujavahetus päratus integraalis ()............................................................... 3 3. Positiivsete arvridade võrdlustunnused. Üks tunnustest tuletada........................................ 3 4. D'Alemberti ja Cauchy tunnused. Üks neist tuletada........................................................... 4 6. Vahelduvate märkidega read. Leibnizi tunnus..................................................................... 5 5. Arvridade absoluutne ja tingimisi koonduvus. Absoluutselt k...
docstxt/135680323154.txt...
Sõnastada m-mõõtmeline ruum. Kaugus m-mõõtmelises ruumis. 2. Defineerida punkti P Rm -¨umbrus, rajapunkt, sisepunkt, hulga raja. 3. Defineerida lahtine/kinnine hulk, lahtine/kinnine kera. 4. Sõnastada m-muutuja funktsioon, m-muutuja funktsiooni määramispiirkond, m-muutuja funktsiooni muutumispiirkond, funktsiooni graafik. +muutumispiirkond +graafik 5. Nivoojooned, nivoopinnad. 6. Sõnastada kuhjumispunkt, m-muutuja funktsiooni piirväärtus, m-muutuja funktsiooni korduvad piirväärtused. 8. m-muutuja funktsiooni pidevus. m-muutuja funktsiooni katkevuspunkt. Pidevuse tarvilik ja piisav tingimus. 9. Sõnastada m-muutuja funktsiooni osatuletis. 10. Kahe muutuja funktsiooni osatuletise geomeetriline tähendus. 11. Pinna puutuja, puutujatasand, normaal. Tuletada puutujatasandi võrrand. +tuletamine 12. Kõrgemat järku osatuletised. Segaosatuletised. 13. Näidata, kui funkts...
Kordse integraali mõiste. Kahekordne intgeraal. Kahekordse integraali omadused...............1 2.Regulaarsed ja normaalsed piirkonnad. Kaksikintegraal. Kahekordse integraali arvutamine kaksikintegraali abi..................................................................................................................... 1 3.Muutujavahetus kordses integraalis. Jakobiaan. Polaarkoordinaadid.....................................2 4.Kolmekordne integraal ja selle arvutamine rist-, silinder- ja sfäärkoordinaatides..................3 5.Teist liiki joonintegraal ja Greeni valem.................................................................................4 6.Diferentsiaalvõrrandi mõiste...................................................................................................5 7.Cauchy ülesanne ehk algväärtusülesanne................................................................................ 5 8.Eksaktne diferentsiaal...
Kahe muutuja funktsiooni väärtuspaaride (x; y) hulka, mille puhul definitsioon. Määramispiirkond. funktsioon z = f (x; y) on määratud, Kahe muutuja funktsiooni nimetatakse selle funktsiooni geomeetriline kujutamine. määramispiirkonnaks. Kui kahe teineteisest sõltumatu muutuva suuruse x ja y igale väärtuspaarile (x; y) mingisugusest nende muutumispiirkonnast D vastab suuruse z väärtus, siis öeldakse, et z on kahe sõltumatu muutuja x ja y funktsioon, mis on määratud piirkonnas D. Argumentide x ja y 2. Kahe muutuja funktsiooni , saame z uue muudu z, mida osamuudu ja täismuudu mõisted nimetatakse funktsiooni z (kujutada ka joonisel). täismuuduks ja mis on määratud Et y väärtus sellel tasa...
Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. · Mitmemõõteliseks ruumiks nimetakse hulka , mille elementideks on kõik reaalarvust koosnevad järjestatud süsteemid ( a1, a2, ..., an). · Mitmemõõtmelise ruumi punktiks nim mitmemõõtmelise ruumi ( a1, a2, ..., an) süsteemi A=( a1, a2, ..., an). · Kaugus mitmemõõelises ruumis. Kui A=( a1, a2, ..., an) ja B=( b1, b2, ..., bn) siis |AB|= (a1-b1)+ (a2-b2)+ ...+ (an-bn) · Kauguste omadused: A=B siis ja ainult siis, kui |AB|=0 |AB|=|BA| |AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi...
Mitmemuutuja funktsiooni lokaalsete ekstreemumite mõisted. Statsionaarne punkt. Kriitiline punkt. piirkonna D rajajoon. Eeldame, et piirkonnas D on täidetud tingimus f(x,y)>=g(x,y). Kahekordse integraali 𝑥 = 𝜌 𝑐𝑜𝑠𝜑 Mitmemuutuja funktsiooni lokaalse ekstreemumi tarvilik tingimus. Definitsioon 1. Öeldakse, et kahe omaduse tõttu ∬𝐷[𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)]𝑑𝑥𝑑𝑦 = ∬𝐷 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 − ∬𝐷 𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦. Mõlemad kahekordsed 𝑦 = 𝜌 𝑠𝑖𝑛𝜑 muutuja funktsioonil on punktis P1(x1, y1) lokaalne maksimum, kui sellel punktil leidub niisugune ümbrus teisendus on kujul 𝑧=𝑧 .Tavaliselt € [0, +lõpmatus) φ € [0, 2π). ∭Ω 𝑓(𝑥,...
. . . -.: 2, N . 4) . (x,y)S - .1: D . . - Rn . . . - . . . r ×r f(x,y)g(x,y), - . . . . . . . - yR 1)D - N= 1 2 . f ( x, y )dxdy g ( x, y...
1 4.Mitme muutuja funktsiooni piirväärtus. Pidevus........................................................ 5 7) Liitfunktsiooni tuletise ja osatuletise valemid. Uks neist tuletada.............................. 6 8) Defineerida funktsiooni tuletis etteantud suunas. Tuletada suunatuletise valem funktsiooni osatuletiste kaudu. Gradient. Telgedesuunalised tuletised. Suunatuletise tõlgendus..................................................................................................................... 9 10. Olgu mitmemuutuja funktsioon u = f (x) antud ilmutamata kujul võrrandiga F(x,u)= 0. Tuletada valem funktsiooni f osatuletiste jaoks funktsiooni F osatuletiste kaudu. Valem tuletada kas kahe muutuja juhul (x = (x, y) R2) või üldjuhul (x Rn)...........11 12.Tuletada Taylori valem kahe- või mitmem...
docstxt/13173375139102.txt...
Kahekordne integraal: põhjalik selgitus (vastava piirkonna jaotus, integraalsumma definitsioon jne). Vaatleme xy-tasandil joonega L piiratud kinnist piirkonda D. Olgu antud pidev funktsioon z=f(x,y). Jaotame piirkonna D mingite joontega n osaks: s1, s2, s3,..., sn, mida nim. osapiirkondadeks. Uute sümbolite kasutuselevõtmise vältimiseks mõistame s1,... ,sn all mitte ainult vastavaid osapiirkondi, vaid ka nende pindasid. Võtame igas osapiirkonnas s1 (selle sees või rajajoonel) mingi punkti P1, saades nii n punkti: P1, P2, P3,..., Pn. Tähistame antud funktsiooni z=f(x,y) väärtusi valitud punktides sümbolitega f(P 1),...,f(Pn) ja moodustame korrutiste summa, mille liikmeteks on f(P1)s1: Summat nim. funktsiooni z=f(x,y) integraalsummaks üle piirkonna D. Kui piirkonna D igas punktis...
· Arvtelje mõiste Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | · Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. o Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. o Reaalarvu a parempoolseks ümbruseks nimetat...
Esimese kontrolltöö materjal hõlmab lõike 1 22 ja teise kontrolltöö materjal hõlmab lõike 23 - 45. Igas kontrolltöös on 5 küsimust. Üks küsimus viiest on valitud jämedas kirjas (bold face) olevate teemade hulgast. Vähemalt kaks küsimust viiest sisaldavad tõestusi, tuletuskäike või põhjendusi. Programm järgib otseselt õppejõu konspekti. Kontrolltöödes ei küsita konspektis esitatud näiteid ja väikeses kirjas olevaid osi. 1. Def. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Def. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: Absoluutväärtuste omadused: · |-a|=|a| · |ab|=|a||b| · |a+b||a|+|b| · |a-b|| |a|-|b| | Reaalarvude ja lõpmatuste ümbrused: Def. Rea...
Kahje muutuja funktsioonid(definitsioon, määramis- ja muutumispiirkonna definitsioon ja tähistused, näited, esitusviisid, ilmutamata kujul esituse definitsioon, graafik ja graafiku näiteid) DEF: Kahe muutuja funktsioon f on kujutus, mis seab igale arvupaarile (x,y) ∈ D vastavusse ühe reaalarvu z= f ( x , y ) Nende punktide (x,y) hulka D, mille puhul funktsiooni väärtus on lõplik, nimetatakse selle funktsiooni määramispiirkonnaks. Funktsiooni väärtuste z hulka Z nimetatakse funktsiooni muutumispiirkonnaks. Esitusviis : z=f (x , y ) z- sõltuv muutja, (x,y)- sõltumatud muutujad Näide: Funktsioon võib olla antud ilmutatud kujul z= f (x1 , x2 , x3 , … x n) (z=x2+y2-5) või ilmutamata kujul F ( x 1 , x 2 ,...
1 1 korral ak≠0(k>n) leidub lõplik või lõpmatu piirväärtus lim 𝑘 , siis selle rea koonduvusraadius avaldub kujul 𝑅 = lim 𝑘 . 14. Fourier’ teisenduse omadusi. Fourier’ teisenduse rakendusi....
docstxt/1290956308116935.txt...
Kahemuutuja funktsiooni integraalsumma ja kahekordse integraali definitsioonid. Kahekordse integraali geomeetriline sisu. 2. Kahekordse integraali omadused (põhjendusi ei küsi). 3. y- ja x-telje suhtes regulaarsed piirkonnad. Kahekordse integraali esitus kaksikintegraalina y- ja x-telje suhtes regulaarsete piirkondade korral. Millal nimetatakse piirkonda regulaarseks? 4. Muutujate vahetus kahekordse integraali all. Kahekordse integraali teisendamine polaarkoordinaatidesse (esitada vastav valem tuletamata). 5. Kolmemuutuja funktsiooni integraalsumma ja kolmekordse integraali definitsioonid. 6. Kolmekordse integraali omadused (põhjendusi ei küsi). 7. Kolmekordse integraali esitamine kolmikintegraalina. 8. Muutujate vahetus kolmekordse integraali all. 9. Silinderkoordinaadid ja nende seosed ristkoordinaatidega. Kolmekordse integraali teisendamine silind...