Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Kordamisküsimused aines "Matemaatiline analüüs I" (0)

5 VÄGA HEA
Punktid
Vasakule Paremale
Kordamisküsimused aines-Matemaatiline analüüs I #1 Kordamisküsimused aines-Matemaatiline analüüs I #2 Kordamisküsimused aines-Matemaatiline analüüs I #3 Kordamisküsimused aines-Matemaatiline analüüs I #4 Kordamisküsimused aines-Matemaatiline analüüs I #5 Kordamisküsimused aines-Matemaatiline analüüs I #6 Kordamisküsimused aines-Matemaatiline analüüs I #7 Kordamisküsimused aines-Matemaatiline analüüs I #8
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 8 lehte Lehekülgede arv dokumendis
Aeg2012-03-14 Kuupäev, millal dokument üles laeti
Allalaadimisi 156 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Tehmeh Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
5
docx

Kordamisküsimused aines "Matemaatiline analü üs I"

Kordamisküsimused aines "Matemaatiline analüüs I" Funktsioon Funktsioon. Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Funktsiooni y argumendiks e sõltumatuks muutujaks nimetatakse muutujat x Sõltuvaks muutujaks nimetatakse funktsiooni y. Funktsiooni määramispiirkond. Funktsiooni y määramispiirkonnaks nimetatakse argumendi x muutumispiirkonda. Funktsiooni y muutumispiirkonnaks Y nimetatakse funktsiooni väärtuseid, mis vastavad kõigile argumendi väärtustele piirkonnas X. Funktsioonide liigid. Paarisfunktsiooniks nimetatakse niisugust funktsiooni f(x), mis rahuldab tingimust

Matemaatiline analüüs I
thumbnail
37
docx

Matemaatiline analüüs l.

muutujaks. Argumendi x muutumispiirkonda nimetatakse funktsiooni f määramispiirkonnaks. Hulka Y = {f(x) || x X} nimetatakse funktsiooni f väärtuste hulgaks. Funktsiooni esitusviisid. 1. Esitusviis tabeli kujul. Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. 2. Anaüüutiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 3.Graafiline esitusviis. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Funktsiooni f graafiku definitsioon on järgmine: G = {P = (x, f(x)) || x X} . Kui f(x) > 0, siis graafik paikneb ülalpool x-telge. Kui aga f(x) < 0, siis graafik jääb x-teljest allapoole. Kui suvaline y-teljega paralleelne sirge saab funktsiooni graafikut lõigata maksimaalselt ühes punktis, siis funktsioon on ühene

Matemaatiline analüüs
thumbnail
142
pdf

Matemaatiline analüüs I

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1

Matemaatika
thumbnail
13
docx

Matemaatiline analüüs I KT

muutumispiirkonnast vastavusse teatud hulga suuruse y väärtusi, kusjuures leidub vähemalt üks x väärtus, millele vastab mitu y väärtust. Funktsiooni esitusviisid: 1) Esitusviis tabeli kujul. Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. 2) Analüütiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 3) Graafiline esitusviis. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Suvaline y-teljega paralleelne sirge saab funktsiooni graafikut lõigata maksimaalselt ühes punktis. See omadus tuleneb otseselt funktsiooni ühesusest. Tõepoolest: kui leiduks y-teljega paralleelne sirge, mis lõikaks graafikut mitmes punktis, siis oleks

Matemaatiline analüüs
thumbnail
3
docx

Matemaatiline analüüs 1

23Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 26l'Hospitali reegli põhjal saab 0/0 tüüpi määramatusega piirväärtuse arvutamisel üle minna piirväärtusele, mille all kasutades mõisteid: esineb esialgse murru lugeja tuletise ja nimetaja tuletise jagatis.

Matemaatiline analüüs 1
thumbnail
10
doc

Matemaatiline analüüs I

Olgu D funktsiooni f määramispiirkonna alamhulk. Valime hulgast D kaks suvalist arvu x1 ja x2 nii, et kehtib võrratus x1 < x2. Kui funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk ei muutu, st f(x1) < f(x2), siis on f kasvav hulgas D. Kui aga funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk muutub vastupidiseks, st f(x1) > f(x2), siis on f kahanev hulgas D. Kasvamispiirkonnas funktsiooni graafik tõuseb, kahanemispiirkonnas aga langeb. Astmefunktsioon ­ funktsioon kujul y = xa, kus a on nullist erinev konstantne astendaja. Selle funktsiooni määramispiirkond, väärtuste hulk ja graafik sõltuvad oluliselt astmest a. Eksponentfunktsioon on funktsioon järgmisel kujul: y = ax , kus astme alus a on konstantne ja rahuldab võrratust a > 0. Lisaks sellele võrratusele eeldame veel, et a = 1 Eksponentfunktsiooni korral X = R ja Y = (0,). 1

Matemaatiline analüüs 1
thumbnail
14
pdf

Matemaatiline analüüs II

nivoojoonad ei lõiku, aga iga punkti läbib kindlasti nivoopind. Mitme muutuja funktsiooni piirväärtus. Pidevus Def: PKA lim K x Kii = i ; P(xki), A(ai), i=1,...,n Def: arv on funktsiooni f(P) piirväärtuseks protsessis, kus PKA, sel korral kui vastavalt igale epsiloni väärtusele leidub delta epsilon, et funktsiooni |f(P) ­ | on väiksem kui delta epsilon, niipea kui punktide,|PK A| < epsilonist, vaheline kaugus on väiksem kui epsilon. lim K f ( PK ) = Kordne piirväärtus! Def: funktsioon f(P) on pidev sel korral, kui funktsiooni piirväärtus,protsessis PA, on võrdne f(A). Funktsioon on pidev piirkonnas D sel korral kui ta on pidev selle piirkonna igas punktis. Märkus: kui funktsioonid f ja g on pidevad, siis f ± g (aritm. Tehete abil saadavad funktsioonid) on ka selles piirkonnas pidev. (pidev f ± pidev f = pidev f) |PA|< f(P) ­ f(A)0 Def: katkev on funktsioon punktis A: a) f(A) = (A ei kuulu MP-sse) b) lim P A f ( P) = c) lim P A f ( P ) f ( A)

Matemaatiline analüüs 2
thumbnail
14
docx

Kordamisküsimused - kinemaatika

 Mis on punkti trajektoor? Trajektoor - pidev joon, mille joonistab punkt oma liikumisel.  Milline on punkti liikumise seadus vektorkujul? r = r(t)  Mida nimetatakse loomulikuks koordinaadiks punkti liikumise korral trajektooril? Loomulik koordinaat punkti liikumisel on kõverjooneline koordinaat s. s = f (t )  Mis vahe on ristkoordinaatidel ja loomulikel koordinaatidel punkti kinemaatikas? Loomulikel koordinaatidel on trajektoori kujuline kõverjooneline koordinaattelg. t s   x 2  y 2  z 2 dt 0 Neid seob valem:  Kirjutada punkti liikumise seadus trajektooril loomuliku koordinaadi kaudu. s  f (t )  Kirjutada punkti liikumise seadus ristkoordinaatides. x  f1 (t ) y  f 2 (t ) z  f 3 (t )  Defineerida punkti liikumise kiirus. Kirjutada ka valem. Punkti liikumise kiirus on selle punkti kohavektori tuletis aja järgi. ds v  s

Matemaatika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun