1. Mis on fni määramispiirkond ja kuidas seda tähistatakse? (õpikus lk. 125) 2. Mis on fni muutumispiirkond ja kuidas seda tähistatakse? 3. Mida nim. fniks?(lk. 124) 4. Mida nim. fni nullkohtadeks? Tähis ja tingimus. 5. Mida nim. fni positiivsuspiirkonnaks? Tähis ja tingimus. 6. Mida nim. fni negatiivsuspiirkonnaks? Tähis ja tingimus. 7. Millal nim. fni vahemikus kasvavaks? 8. Millal nim. fni vahemikus kahanevaks) (lk. 134) 9. Missugust fni nim. kasvavaks? 10. Missugust fni nim. kahanevaks?(lk. 136) 11. Millal on funktsioonil kohal xe maksimum? (lk. 136) 12. Millal on fnil kohal xe miinimum? 13. Missugust fni nim. paarisfniks? (lk. 147) 14. Milline omadus iseloomustab paarisfni graafikut? 15. Missugust fni nim. paariituks? (lk147,148) 16. Milline omadus iseloomustab paaritu fni graafikut? Vastused 1. Fni määramispiirkonnaks X nimetatakse argumendi x kõigi väärtuste hulka mille korral saab f...
-2 26x = 42x 3. Lahendage logaritmvõrrand ja kontrollige saadud lahendeid: ( log x ) 2 - 6 log x + 7 = 0 4. Leidke koonuse telglõike pindala, kui moodustaja on 15 cm ja kõrgus 12 cm. 5. On antud funktsioon y = 2x3 + x 2 · Leidke funktsiooni nullkohad X0 · Leidke funktsiooni positiivsus- ja negatiivsuspiirkond X+, X- · Leidke funktsiooni tuletis · Leidke funktsiooni kasvamine ja kahanemine X , X · Leidke ekstreemumpunktid · Skitseerige funktsiooni graafik Matemaatika proovieksami ülesanded aastal 2008/2009 3. kursus Variant II 1. Lahendage juurvõrrand ja kontrollige saadud lahendeid:
Ande Andekas-Lammutaja Matemaatika Funktsioon Funktsiooniks nimetatakse vastavust, mis seab sõltumatu muutuja x igale väärtusele hulgale X vastavusse sõltuva muutuja y ühe kindla väärtuse hulgast Y (Funktsioon on seos kahe muutuja vahel, kus ühe muutuja igale väärtusele vastab üks kindel teise muutuja väärtus). Võrdelise seose valemiks on y = ax ja tunnuseks a = y/x. Graafikuks on sirgjoon, mis läbib punkte (0;0) ning (1;a). Pöördvõrdelise seose valemiks on y = a/x, kus x 0 ja tunnuseks a = xy. Graafikuks on hüperbool. Lineaarfunktsiooni valemiks on y = ax + b ning graafikuks sirgjoon, mis läbib punkte (0;b) ning (1;a+b). Funktsiooni määramispiirkond (X) on sõltumatu muutuja e. argumendi x väärtuste e. funktsiooni väärtuste hulk. Funktsiooni muutumispiirkond (Y) on sõltuva muutuja y ...
Määramispiirkond x-i väärtuste hulk ehk argumentide hulk, mille korral on võimalik arvutada funktsiooni (y) väärtust. 5. Muutumispiirkond funktsiooni (y-i)väärtuste hulk. 6. Nullkohad nim. neid argumendiväärtuseid, mille korral funktsiooni väärtus on 0. Xa=f(a)=0 jooniselt x-i väärtused, mille korral graafil puutub või lõikab x-telge. 7. Positiivsuspiirkond argumentide väärtuste hulk, mille korral funktsiooni väärtus on positiivne. 8. Negatiivsuspiirkond argumentide väärtuste hulk, mille korral funktsiooni väärtus on negatiivne. 9. Kasvamine funktsioon y=(f) on kasvav, kui argumendi väärtuste (x-i) kasvades funktsiooni väärtused (y) kasvavad. 10.Kahanemine funktsioon y=(f) on kahanev, kui argumendi väärtuste (x-i) kasvades funktsiooni (y) väärtused kahanevad. 11.Ekstreemumkohad nimetatakse neid argumendiväärtuseid, mille korral funktsiooni kasvamine läheb üle kahanemiseks või vastupidi.
LOGARITM Eksponetfunktsiooniks nim funktsiooni y=ax ,kus a>0 ja a=1 Eksponetfunktsiooni omadused: *Eksponentfunktsiooni y=ax määramispiirkond on reaalarvude hulk R *Muutumispiirkond on positiivsette reaalarvude hulk. * Funktsiooni y=ax positiivsuspiirkond ühtib määramispiirkonnaga, negatiivususp. Puudub. *Funktsiooni y=ax on kasvav kui a>1 ja kahanev, kui 0
a · Pöördvõrdeline sõltuvus y= x Funktsiooni uurimine · Nullkohtade hulk X0 : f ( x) = 0 funktsiooni f(x) nullkohtade x1; x2; x3 leidmine · Positiivsuspiirkond X : f ( x) > 0 + · Negatiivsuspiirkond X - : f ( x) < 0 · Kasvamisvahemikud X : f ( x ) > 0 · Kahanemisvahemikud X : f ( x ) < 0 · Maksimumkoht Kui f ( x 1 ) = 0 ja f ( x 1 ) < 0 , siis x1 on maksimumkoht · Miinimumkoht Kui f ( x 2 ) = 0 ja f ( x 2 ) > 0 , siis x2 on miinimumkoht
-f(x) = f(-x) Võrdeline sõltuvus (sirge) X määramis piirkond y=ax X0 nullkoht X+ positiivsuspiirkond Funktsi X- negatiivsuspiirkond Pöördvõrdeline sõltuvus (hüperbool) Y muutumispiirkond y=a /x Lineaarfunktsioon (sirge) a >0 I ja III veerand oonid I
Kordamisülesandeid 12.klassile eksamiks valmistumisel 1. Leida funktsiooni y = -0,5x2 4x ekstreemum, kahanemispiirkond ja graafiku puutuja kohal x = -2 7 + 2x 2. Leida funktsiooni y log negatiivsuspiirkond x 3. Leida joone x- 1 puutuja, mis onparelleelne sirgega 8x 2y + 1 = 0 y x 4. Leida funktsiooni y = x3 2x + 4graafiku puutuja tõus kohal, kus graafik lõikub funktsiooni y = x3 graafikuga. 5. Ringi on joonestatud suurima pindalaga ristkülik ümbermõõduga 80 cm. Milline on selle ristküliku pindala ja ringi raadius? 3 6 a 3 a+9
nende liik. 2. Leidke funktsiooni f (x) kasvamisvahemikud. 3. Joonestage funktsiooni f (x) graafik lõigul [1; 3]. 44. Joonisel on antud funktsioonide f (x) = cos x ja g(x) = sin 2x graafikud lõigul [0; 2]. 1. Kirjutage joonisele funktsioonide nimetused. 2. Lahendage kirjalikult võrrand cos x = sin 2x lõigul [0; 2].. 3. Joonestage antud koordinaatteljestikku funktsiooni h(x) = cos x -1 graafik lõigul [0; 2]. 4. Leidke joonise põhjal kõigi kolme funktsiooni ühine negatiivsuspiirkond lõigul [0; 2]. 45.(2011) On antud funktsioonid f x log 1 x x 3 , g x a ln x b , kus a R, b R ja 2 3 2 h x log 1 x 1 1 3 3 1. Arvutage 3 f 3 . 2. Lahendage võrrand f (x) = h(x) . 3. Kas leidub parameetri p, p R väärtus nii, et võrrandil f (x) = f ( p) on ainult üks lahend? Põhjendage oma vastust. 4
Kui hulga X igale elemendile x on seatud vastavusse hulga Y üks kindel element y, siis öeldakse, et hulgal X on määratud funktsioon. Määramispiirkond koosneb nendest x väärtustes, mille korral saab välja arvutada y väärtuse. Arvestada tuleb: 1)nulliga ei saa jagada 1)paarisarvulise juuriga juurt saab võtta ainult positiivsetest arvudest või arvust 0. 1)määramispiirkond- leian jooniselt need x väärtused, mille korral on võimalik paralleelselt y teljega liikuda graafikuni. 2)muutumispiirkond-leian y teljelt. 3)nullkohad-selline x väärtus, mille korral funktsiooni graafik läbib või puudutab x telge. Y=0 4)positiivsuspiirkond-kui graafik asub ülevalpool x telge, on funktsiooni väärtused positiivsed. y>0 5)negatiivsuspiirkond-kui graafik asub allpool x telge, on funktsiooni väärtused negatiivsed. Y<0 6)kasvamisvahemik-leian jooniselt need x väärtused mille korral graafikut vasakult paremale joonestades käsi tõuseb. 7)kahanemisvahemik-leia...
1.Määramispiirkond = katkevuskohad 2.Nullkohad X 0 : y=0 murru korral mõlemad osad 0-ga võrduma -¿ <0 murru korral korrutiseks ¿ 3.Pos/neg piirkond +¿ : y >0 X + joonis X¿ 4.Ekstr.kohad X e : y ´ =0 , murru korral ülemine osa nulliga võrduma 5.Ekst.punktid- asendad ekstr. kohad alg v-sse 6.Kasvamine/kahanemine X : y ´ > 0 X : y ´ < 0 murru korral korrutiseks+ joonis ,max,min ekstr. 7. Käänukoht X K = y ´ ´ =0 murru korral ülemine osa 0-ga võrduma 8.Käänup. asendad käänukohad algv-sse 9.Kumerus/nõgusus X : y ´ ´ < 0 X : y ´ ´ > 0 murru korral korrutiseks + joonis pos-nõgus, neg- kumer 10.Asümptoodid: PA-katkevuskohad f (x ) b1,2 = lim [ f ( x )-kx ] KA- y=kx+b k =xlim ± x x ± Määramisp...
Valemid Võrdeline sõltuvus y = ax a Pöördvõrdeline sõltuvus y x Diferentseeruva funktsiooni uurimine Nullkohtade hulk X0 : f x 0 funktsiooni f(x) nullkohtade x1; x2; x3 leidmine Positiivsuspiirkond X : f x 0 Negatiivsuspiirkond X : f x 0 Kasvamisvahemikud X : f x 0 Kahanemisvahemikud X : f x 0 Maksimumkoht Kui f x 1 0 ja f x 1 0 , siis x1 on maksimumkoht Miinimumkoht Kui f x 2 0 ja f x 2 0 , siis x2 on miinimumkoht Funktsiooni maksimum ymax = f (xmax)
siis funktsiooni y = af(kx+b) periood onT k tavaliselt tunnuseks, et funktsiooni valemis leidub kas sin, cos või tan Nullkohad on need x väärtused, mille puhul funktsiooni väärtus on 0 (graafik läbib x-telge või puutub seda) f(x) = 0 X0 = {x| f(x) = 0} Positiivsuspiirkond - muutuja x väärtuste hulk, kus funktsiooni väärtused on positiivsed f(x)>0 Negatiivsuspiirkond - muutuja x väärtuste hulk, kus funktsiooni väärtused on negatiivsed f(x)<0 X + = {x| f(x) > 0} X - = {x| f(x) < 0} Kui funktsiooni y = f(x) kasvamine läheb x suurenedes kohal xe kahanemiseks või funktsiooni y = f(x) kahanemine läheb x suurenedes kohal xe kasvamiseks, siis on koht xe selle funktsiooni ekstreemumkoht f '(x) = 0 Xmax maksimumkoht, kui f ''(x)<0
hulk. 11. Funktsiooni nullkohad argumendi väärtused, mille korral funktsiooni väärtus on 0, nimetatakse nullkohtadeks. Funktsiooni nullkohtade leidmiseks tuleb määrata need x väärtused, kus f (x) = 0. Funktsiooni positiivsuspiirkond funktsiooni positiivsuspiirkonna moodustavad argumendi need väärtused, mille korral funktsiooni väärtus on positiivne. Funktsiooni positiivsuspiirkonna leidmiseks tuleb määrata need x väärtused, kus f (x) > 0. Funktsiooni negatiivsuspiirkond funktsiooni negatiivsuspiirkonna moodustavad argumendi need väärtused, mille korral funktsiooni väärtus on negatiivne. Funktsiooni negatiivsuspiirkonna leidmiseks tuleb määrata need x väärtused, kus f (x) < 0. 12. Funktsiooni kasvamine funktsiooni y = f (x) nimetatakse kasvavaks vahemikus (a; b), kui selles vahemikus argumendi väärtuste suurenedes ka funktsiooni vastavad väärtused suurenevad: kui x1 < x2, siis ka f (x1) < f (x2).
Trigonomeetria ülesanded riigieksamil 1. (17.05.1997, H, 10 punkti). Lihtsustage avaldis 2 sin sin 2 2 cos 2 cos2 tan ja arvutage selle väärtus, kui . 4 2. (17.05.1997, R, 15 punkti). Lahendage võrrand cos 2 cos 2 x cos x . 2 3. (23.05.1998, I, 10 punkti). On antud jooned y sin x ja y cos x . 1)...
1) määramispiirkond X = (- ; + ) 2) katkevuspunktid Funktsioon on kõikjal pidev, katkevuspunktid puuduvad. 3) nullkohad Nullkohtade leidmiseks lahendame võrrandi f (x) = 0 3 x3 - 6x 2 = 0 x3 - 6 x 2 = 0 x 2 ( x - 6) = 0 x1, 2 = 0 ; x3 = 6 X 0 = {0;6} 4) paaris, paaritu või perioodiline Ei paaris, paaritu, ega perioodiline. 22 Funktsiooni uurimine 5) positiivsus- ja negatiivsuspiirkond Positiivsuspiirkonna leidmiseks lahendame võrratuse f (x) > 0 3 x3 - 6x 2 > 0 x 2 ( x - 6) > 0 Kasutame intervallimeetodit 0 6 Jooniselt näeme, et X + = (6; ) X - = {(- ;0 ); (0;6 )} 23 Funktsiooni uurimine 6) monotoonsuse piirkonnad, ekstreemumid Leiame funktsiooni f (x) kriitilised punktid
1. Määramispiirkond (so nende x väärtuste hulk, millas funktsiooni avaldis on arvutatav). 2. Nullkohad, so graafiku lõikepunktid x teljega (f(x)=0). 3. Graafiku sümmeetrilisus koordinaattelgede ja nullpunkti suhtes: f(-x) = f(x) paarisfunktsioon, sümmeetriline y telje suhtes; f(-x) = -f(x) paaritu funktsioon, sümmeetriline koordinaatide alguspunkti suhtes; 4. Positiivsus- ja negatiivsuspiirkond: f(x) > 0 - positiivsuspiirkond; f(x) < 0 negatiivsuspiirkond. 5. Kasvamis- ja kahanemispiirkond: f '(x) > 0 kasvamispiirkond; f '(x) < kahanemispiirkond. Funktsiooni y = f(x) nimetatakse mingis x väärtuste vahemikus kasvavaks, kui argumendi x
argumendiks on raadius r. Selle funktsiooni määramispiirkonnaks on mittenegatiivsete reaalarvude hulk. Funktsiooni määramispiirkonna osahulgad Funktsiooni nullkohad on määramispiirkonna osahulk, mille korral funktsiooni väärtus on null: X0 = {x | x X , f ( x) = 0} Funktsiooni positiivsuspiirkond on määramispiirkonna osahulk, mille korral funktsiooni väärtus on positiivne: X+ = {x | x X, f ( x ) > 0} Funktsiooni negatiivsuspiirkond on määramispiirkonna osahulk, mille korral funktsiooni väärtus on negatiivne: X- = {x | x X, f ( x ) < 0} . Ülesanded 1. Leidke funktsiooni määramispiirkond x 2x 1) y = 4- x + 2) y= x -1 - x 2 - 5x + 6 3) y = (1 - 2 x )1/ 4 2
Aritmeetiline jada-Jada, mille iga liige alates teisest on võrdne eelneva liikme ja selle jada jaoks mingi kindla arvu summaga nimetatakse aritmeetiliseks jadaks. Seda kindlat arvu nimetatakse aritmeetilise arvu jadaks ja tähistatakse tähega d. an=a1+(n-1)d an+1=an+d » an+1-an=d sn= a1+an/2 x n või sn=2a1+(n-1)d/2 Geomeetriline jada- Jada, mille iga liige alates teisest on võrdne eelneva liikme ja antud jada jaoks mingi kindla arvu korrutisega nimetatakse geomeetriliseks jadaks. Seda kindlat arvu nimetatakse teguriks ja tähistatakse tähega q n-1 n an=a1 x q q=an+1/n sn=a1(q -1)/q-1 Lõpmatult kahaneva geomeetrilise jada summa- S=a1/1-q Arvu ,,A" nimetatakse jada ,,an" tõkestamatul kasvamisel ja tähistatakse sümboliga liman=A n lim1/n=0 Piirväärtus n (tõkestamatul kasvamisel) ...
iseloomustavatest suurustest (punktid, piirkonnad jne). 1. Määramispiirkond (so nende x väärtuste hulk, millas funktsiooni avaldis on arvutatav). 2. Nullkohad, so graafiku lõikepunktid x teljega (f(x)=0). 3. Graafiku sümmeetrilisus koordinaattelgede ja nullpunkti suhtes: f(-x) = f(x) paarisfunktsioon, sümmeetriline y telje suhtes; f(-x) = -f(x) paaritu funktsioon, sümmeetriline koordinaatide alguspunkti suhtes; 4. Positiivsus- ja negatiivsuspiirkond: f(x) > 0 - positiivsuspiirkond; f(x) < 0 negatiivsuspiirkond. 5. Kasvamis- ja kahanemispiirkond: f '(x) > 0 kasvamispiirkond; f '(x) < kahanemispiirkond. Funktsiooni y = f(x) nimetatakse mingis x väärtuste vahemikus kasvavaks, kui argumendi x kasvamisel selles vahemikus kasvavad ka vastavad y väärtused ja kahanevaks, kui x väärtuste
sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 sin2 cos = sin /tan cos2 1 = - sin2 cot = cos /sin cot =1/tan sin2 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ) sin = vastas kaatet/hüpotenuus cos = sin (90o ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ) tan = vastas kaatet/lähis kaatet cot =tan (90o ) cot = lähis kaatet/vastas kaatet tan = cot (90o ) Kolmnurga pindala Koosinusteoreem Siinusteoreem S=a*h/2 a2=b2+c2-2bc*cos ...
Matemaatika ,,Funktsioon" test Võrdeline seos muutujad x ja y on seotud valemiga y=ax, kus (a0) Võrdelise seose graafikuks on sirge, mis läbib 0-punkti. a>0 I & III a<0 II & IV Suurust y nimetatakse sõltuvaks suurusest x, kui erinevatele x väärtustele vastavad kindlad y väärtused. · X-sõltumata muutuja · Y-sõltuv muutuja Funktsioon vastavus, mille järgi sõltumatu muutuja igale kindlale väärtusele seatakse vastavusse sõltuva muutuja mingi väärtus Funktsiooni y=f(x) määramispiirkonnaks nimetatakse kõikide selliste muutuja x väärtuste hulka, mille korral saab funktsiooni väärtust y arvutada. (Tähis:X) Funktsiooni y=f(x) muutumispiirkonnaks nimetatakse muutja y kõigi väärtuste hulka.(Tähis:Y) Funktsiooni esitusviisid: valem, sõnaline formuleering, nooldiagramm, graafik, tabel. Funktsiooni nullkohaks nimetatakse argumendi väärtust, mille korral funktsiooni väärtus on null. Võrrand-(f(x)=0)(Tähis:X0) Funktsiooni posit...
Samamoodi, kui funktsioon on diferentseeruv, määratletakse ka funktsiooni kolmandat järku tuletis jne. Üldiselt, funktsiooni -ndat järku tuletist kohal , kus , tähistatakse . 12.Funktsiooni diferentsiaal 13. L`Hospitali reegel. 14, Funktsiooni uurimine Funktsiooni y=f(x) uurimine järgmise skeemi järgi: 1. leida funktsiooni määramispiirkond X 2. leida funktsiooni nullkohad X0 3. leida funktsiooni negatiivsuspiirkond X- ja positiivsuspiirkond X+ 4. leida funktsiooni ekstreemumkohad Xe ja ekstreemumid 5. leida kasvamispiirkond X ja kahanemispiirkond X 6. leida funktsiooni käänukohad Xk 7. leida kumeruspiirkond ja nõgususpiirkond 8. toetudes leitud andmetele, skitseerida funktsiooni graafik 15. Algfunktsioon ja määramata integraal 16. Määramata integraali omadused 17. Asendusvõte määramata integrali puhul. 18. Ositi integreerimine 19. Määratud integrali mõiste 20
Funktsioonid ja nende graafikud Valemid · Võrdeline sõltuvus y = ax a · Pöördvõrdeline sõltuvus y= x Diferentseeruva funktsiooni uurimine · Nullkohtade hulk X0 : f ( x) = 0 funktsiooni f(x) nullkohtade x1; x2; x3 leidmine · Positiivsuspiirkond X : f ( x) > 0 + · Negatiivsuspiirkond X - : f ( x) < 0 · Kasvamisvahemikud X : f ( x ) > 0 · Kahanemisvahemikud X : f ( x ) < 0 · Maksimumkoht Kui f ( x 1 ) = 0 ja f ( x 1 ) < 0 , siis x1 on maksimumkoht · Miinimumkoht Kui f ( x 2 ) = 0 ja f ( x 2 ) > 0 , siis x2 on miinimumkoht · Funktsiooni maksimum ymax = f (xmax) · Funktsiooni miinimum ymin = f (xmin)
14 y y = 2sin x - // . . x , y = -1 a) Funktsiooni y 2 sin x graafikult näeme, et funktsiooni y 2 sin x positiivsuspiirkond on X 0; ja negatiivsuspiirkond on X ;2 . b) Täiendame joonist sirgega y 1 . Jooniselt näeme, et funktsiooni y 2 sin x graafik on allpool 7 11 sirget y 1 , kui x ; . 6 6 #y 2 sin x Tõepoolest, leides võrrandisüsteemist " joonte y 2 sin x ja y 1 lõikepunktide !y 1
MATEMAATIKA RIIGIEKSAM 2010 Eksami eesmärk Matemaatika riigieksami peamisteks eesmärkideks on: · teada saada, kui struktureeritud ja korrastatud on gümnaasiumilõpetaja matemaatikaalased teadmised; · selgitada välja, kui hästi suudab õpilane õpitut rakendada (näiteks lahendada mitterutiinseid ülesandeid); · teada saada, milline on gümnaasiumilõpetajate matemaatikaalane ettevalmistus õpingute jätkamiseks järgmisel haridusastmel. Eksami vorm Matemaatika riigieksami põhieksam on kahes variandis ja lisaeksam on ühes variandis. Matemaatika riigieksam (ja ka lisaeksam) on kaheosaline kirjalik eksam 1. osa kestus on 120 minutit ja 2. osa kestus on 150 minutit. Kahe eksamiosa vahel on 45 minutiline vaheaeg. Käesoleva õppeaasta matemaatika riigieksam toimub 4. mail 2010.a, algusega kell 10.00. Eksaminandidele, kes mõjuvatel põhjustel põhieksamil osaleda ei saa, korraldatakse lisaek...
2) kas f ( x ) = x3 - 4x on paaritu funktsioon. 1 3) funktsiooni nullkohad, positiivsus ja negatiivsuspiirkonnad. Vastus: 1) -15, 15 a3 -4a , x3 +3ax2 + (3a2 -4)x , 2 2) f(-x) = -f(x) 3 3) X+ = (-2; 0) U ( 2; ) X- = ( - ; -2 ) U ( 0 ; 2 ) b) Joonisel on esitatud funktsiooni graafik. Leidke funktsiooni graafikult 1) nullkohad 2) positiivsus- ja negatiivsuspiirkond 3) kasvamis- ja kahanemisvahemikud 4) maksimum- ja miinimumpunkti koordinaadid Vastus: 1) x1= -1,6 x2 = 3,1 2) X+= ( - ; - 1,5 ) U ( 3,1 ; ) X - ( -1,6;3,1 )
Vastus: 1) -15, 15 a3 -4a , x3 +3ax2 + (3a2 -4)x , 2) f(-x) = -f(x) 3) X+ = (-2; 0) U ( 2; ) X- = ( - ; -2 ) U ( 0 ; 2 ) b) Joonisel on esitatud funktsiooni graafik. Leidke funktsiooni graafikult 1) nullkohad 2) positiivsus- ja negatiivsuspiirkond 3) kasvamis- ja kahanemisvahemikud 4) maksimum- ja miinimumpunkti koordinaadid Vastus: 1) x1= -1,6 x2 = 3,1 2) X+= ( - ; - 1,5 ) U ( 3,1 ; )
Kõrgem matemaatika 1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks ristkülikukujuline arvudega tabel, milles on m-rida ja n-veergu. Tähistused: (maatriksit tähistatakse suure tähega) a11 a12 ... a1n a 21 a 22 ... a2n i =1,2,..., m = A( aij ), ... ... ... ... j =1,2,..., n a m1 am2 ... a mn Maatriksi järk tähistab maatriksi môôtmeid; A on m*n järku maatriks. Maatriksi liigid: 1) Ruutmaatriks: m=n; 2) Diagonaalmaatriks: a11, a22, amm - peadiagonaal (diagonaalil ei ole 0; muud elemendid 0-d); 3) Ühikmaatriks (diagonaalmaatriksi erijuht): a11 = a22 ... = amm = 1; (Täh. E); 4) Nullmaatriks: aij = 0, iga i ja j korral; (Täh ). 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). 1) Korrutamine arvuga: A=(aij), kR; kA=C; C=(cij), kus cij = kaij. 2) Maatriksite liit...