TALLINNA TEHNIKAÜLIKOOL Mehhatroonikainstituut JÜRI KIRS INSENERIMEHAANIKA III Loenguid ja harjutusi dünaamikast Tallinn 2004 J. Kirs Loenguid ja harjutusi dünaamikast 2 III osa. DÜNAAMIKA §1. Sissejuhatus 1. Dünaamika aine ja põhikategooriad Dünaamikaks nimetatakse mehaanika osa, milles uuritakse materiaalsete kehade liikumist neile rakendatud jõudude mõjul. Staatikas uuritakse ainult jõudusid ja jõusüsteeme ning seal ei uurita seda, kuidas liiguks materiaalne osake või jäik keha kui sellele need jõud rakendada. Kinemaatikas uuritakse ainult liikumist, kuid seda puht geomeetrilisest aspektist, jättes täielikult välja jõud, mis selle liikumise põhjustavad. Dünaamikas uuritakse
Tallinna Tehnikaülikool Mehhatroonikainstituut Kodutöö D-1 Punkti dünaamika II põhiülesanne Variant 19 Õppejõud: Jüri Kirs Üliõpilane: Matrikli number: Rühm: Kuupäev: 17.11.09 Tallinn 2009 Ülesanne nr 1. Punktmass massiga m saab algkiiruse v 0 ja liigub keskkonnas, mille takistus on R = b v . Millise aja vältel jääb punktmass seisma ja millise vahemaa ta läbib selle ajaga? Lahendus gg
Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x ja dy:= y, nimetatakse funktsiooni f(x,y)
on olemas veel ajatelg. Et mõõtühikud peavad kõigil telgedel olema samad, tuleb ajamomenti enne teljele kandmist korrutada valguse kiirusega, mis erirelatiivsusteooria järgi on kõigis taustsüsteemides ühesugune. Nii saamegi neli koordinaati: x, y, z ja ct; keha liikumisteele (punktide hulk, kus liikuv keha asub erinevatel ajamomentidel) vastabki neliruumis tema maailmajoon. 11. N II ja III seadus. Jõud, mass ja impulss. Inertne ja raske mass. N II seadus ehk masspunkti dünaamika põhivõrrand Liikumishulga muutus on võrdeline jõuimpulsiga ja toimub jõu mõjumise suunas. r r d (mv ) = F dt Impulss e liikumishulk Liikumisolekut kirjeldav suurus, mis võrdub massi ja kiiruse korrutisega. r r r r p = L = mv = F t Jõud Jõud on füüsikaline suurus, millega mõõdetakse ühe keha mõju teisele. Jõu tulemusena muutub kehade liikumishulk r r L = mv
tangentsiaalkiirendusele. t = -m a Ct (F2) Kummagi rakenduspunkt ei tule mitte masskeskmesse C . Nende moodulid arvutatakse välja masskeskme C kiirenduse alusel, aga nad rakendatakse mõlemad hoopis teise punkti. Teooriat selle osa kohta võib põhjalikumalt lugeda interneti dünaamika raamatust: J.Kirs, Loenguid ja harjutusi dünaamikast, paragrahvist 20, alates leheküljelt 269. Ülesande 1 lahendus. Vaatame süsteemi suvalisel ajahetkel liikumise ajal ja joonistame kõigepealt süsteemi kehadele tegelikult mõjuvad jõud. Neid on siin ainult neli: keha 1 raskusjõud P1 , mis võrdub m1 g ; keha 2
88. a B =a A v B = v A 89. 90. Trajektooride asi · Punkti B trajektoor saadakse punkti A trajektoorist paralleellükke tulemusena · A1 B1 AB See paralleellüke on seal teostatud vektoritega ja 91. 92. Impulssmoment 93. 94. Keha korral lihtsalt summeeritakse ainepunktide impulssmomendid 95. 96. Enamasti on 97. 98. Pöördliikumise dünaamika põhiseadus 99. 100. 101. Impulssmomendi jäävuse seadus 102. Vastavalt Newtoni III seadusele on sisejõudude momentide summa null 103. Olgu n ainepunktist koosnev isoleritud ainepunktide süsteem. Seega välisjõudude summa on null või nad puuduvad. Samuti on välisjõudude momentide summa null või nad puuduvad. Seega on ainult sisejõudude momendid 104. 105. 106. 107. 108. 109. 110. Jäiga keha tasapinnalise liikumise võrrandid
MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2. Funktsiooni z x2 y 2 graafikuks on pöördparaboloid (vaata allpool olevat joonist) Kahe muutuja funktsiooni f nivoojoonteks nimetatakse jooni f x, y c Näide 3. Tüüpiline näide nivoojoo
Sisujuht 16. Esimest liiki katkevuspunkt - niisugust katkevuspunkti, kus funktsioonil f on olemas ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. .....
Kõik kommentaarid