Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Põhikooli lõpueksam matemaatikast (0)

3 KEHV
Punktid
Vasakule Paremale
Põhikooli lõpueksam matemaatikast #1 Põhikooli lõpueksam matemaatikast #2 Põhikooli lõpueksam matemaatikast #3 Põhikooli lõpueksam matemaatikast #4 Põhikooli lõpueksam matemaatikast #5 Põhikooli lõpueksam matemaatikast #6 Põhikooli lõpueksam matemaatikast #7 Põhikooli lõpueksam matemaatikast #8 Põhikooli lõpueksam matemaatikast #9 Põhikooli lõpueksam matemaatikast #10 Põhikooli lõpueksam matemaatikast #11 Põhikooli lõpueksam matemaatikast #12 Põhikooli lõpueksam matemaatikast #13 Põhikooli lõpueksam matemaatikast #14
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 14 lehte Lehekülgede arv dokumendis
Aeg2015-10-24 Kuupäev, millal dokument üles laeti
Allalaadimisi 144 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor danielo116 Õppematerjali autor

Sarnased õppematerjalid

thumbnail
9
doc

Mõisted, valemid ja joonised

1. harilik murd Harilik murd näitab, mitmeks võrdseks osaks on tervik jaotatud ja mitu sellist osa on võetud. 2. kümnendmurd Kümnendmurd on komaga arv. N: 23,4 ;14,1 ; 3,8 ; 10,5 3.murru taandamine Hariliku murru taandamiseks nimetatakse murru lugeja ja nimetaja jagamist ühe ja sama nullist erineva arvuga. 4.Astmete korrutamine Ühe ja sama arvu astmete korrutamisel astendajad liidetakse. 32 · 31 = 32 + 1 = 33 = 3 · 3 · 3 = 27 5.Astmete astendamine Astme astendamisel astendajad korrutatakse. 6.Astmete jagamine Ühe ja sama arvu astmete jagamisel astendajad lahutatakse. a m : a n = a m-n 7.Negatiivne astendaja Murd, mille lugejaks on arv 1 nimetajaks sama aste positiivse astendajaga. 1 a -n = n , kus a 0 a 8.Arvu standardkuju Kui arv on esitatud kahe teguri korrutisena, millest üks jääb arvude 1 ja 10 vahele ning teine arvu 10 aste, siis öeldakse, et arv on kirjutatud standardkujul. N: 20000 = 2 *10 4 5000000000 = 5 * 10 9 9.Ligikaudse arvu tü

Matemaatika
thumbnail
18
pdf

8. klassi raudvara: PTK 6

6.ptk Ruutvõrrand 8.klass Õpitulemused Näited 1.Arvu ruut - kahe võrdse teguri korrutis Ül.1262,1263 2 a a=a ; mistahes ratsionaalarvu ruut on Leida arvu ruut taskuarvuti abil. mittenegatiivne 2 2 2 2 15 =225; 28 =784; 41 =1681; 57 =3249 Lihtsustada avaldis ja arvutada. 2 2 2 2 2,4 2 =(2,4 2) =4,8 =23,04 NB ruutjuure pöördtehe; saab kasutada 2 näiteks ruudu ja ringi pindala arvutamisel =3,5 =12,25 2 2 2 2 2 (-4,5) 4 -8 (-1,5) =(-4,5 4) -(-8

Matemaatika
thumbnail
11
pdf

8. klassi raudvara: PTK 5

5.ptk Ringjoon ja korrapärane kolmnurk 8.klass Õpitulemused Näited 1.Ringjoone kaar ja kõõl - kaar: ringjoone osa, Ül.1060 saadakse vähemalt kahe punkti märkimisel Ringjoone punktist on joonestatud kaks ringjoonele; tähistamine: kirjuatatakse raadiusega võrdset kõõlu. Leida kõõlude otspunktide tähised (vajadusel lisatakse veel vaheline nurk. kolmas täht vahele) ja tõmmatakse kohale joonestada kõõlude otspunktidesse raadiused kaareke; mõõdetakse kaarekraadides; kõõl: tekivad kaks võrdkülgset kolmnurka ringjoone kaht punkti ühendav lõik, kõige iga nurk on 60° pikem kõõl on ringjoone diameeter kõõlude vahele jääb kaks sellist nurka seega kõõlude vaheline nurk on 2 60°=120° NB kesknurk suurusega 1° toetub kaarele, mis moodustab ringjoonest 2.Kesknurk - ringjoone kahe

Matemaatika
thumbnail
6
doc

Planimeetria kordamine

PLANIMEETRIA KORDAMINE NELINURGAD RÖÖPKÜLIK Vastasküljed on paralleelsed ja võrdsed Vastasnurgad on võrdsed Diagonaalid poolitavad teineteist Diagonaal jaotab rööpküliku kaheks pindvõrdseks kolmnurgaks Lähisnurkade summa on 180º ( Diagonaalide ruutude summa on võrdne külgede ruutude summaga: d 12 + d 22 = 2 a 2 + b 2 ) Ümbermõõt. P = 2( a + b ) Pindala: S = ah S = a b sin ROMB On võrdsete külgedega rööpkülik, seega on rombil kõik rööpküliku omadused. Lisaks on rombi diagonaalid risti ja poolitavad rombi nurgad, Rombi kõrgused on pikkuselt võrdsed. 1 Rombi diagonaalide lõikepunkt on siseringjoone keskpunkt r = h 2 d 12 + d 22 = 4a 2 Ümbermõõt: P = 4a Pindala: S = a h

Matemaatika
thumbnail
12
doc

PLANIMEETRIAKURSUSE KORDAMINE GÜMNAASIUMI LÕPUEKSAMIKS.

PLANIMEETRIAKURSUSE KORDAMINE GÜMNAASIUMI LÕPUEKSAMIKS. KOLMNURGAD 1. Kolmnurga sisenurkade summa on sirgnurk       180 o 2. Siinusteoreem a b c    2R sin  sin  sin  2. Koosinusteoreem a 2  b 2  c 2  2bc cos  b 2  a 2  c 2  2ac cos  c 2  a 2  b 2  2ab cos  4. Pindala valemid. ch ab sin  abc S ; S ; S  p ( p  a )( p  b)( p  c) ; p ; 2 2 2 abc S  pr ; S 4R 5. Kolmnurga kõrgus (h on ristlõik külje ja selle vastastipu vahel) , mediaan (m on lõik külje keskpunkti ja se

Matemaatika
thumbnail
6
doc

Planimeetria

PLANIMEETRIAKURSUSE KORDAMINE GÜMNAASIUMI LÕPUEKSAMIKS. KOLMNURGAD 1. Kolmnurga sisenurkade summa on sirgnurk + + = 180 o 2. Siinusteoreem a b c = = = 2R sin sin sin 2. Koosinusteoreem a 2 = b 2 + c 2 - 2bc cos b 2 = a 2 + c 2 - 2ac cos c 2 = a 2 + b 2 - 2ab cos 4. Pindala valemid. ch ab sin a +b +c S= ; S= ; S = p ( p - a )( p -b)( p -c ) ; p= ; 2 2 2 abc S = pr ; S= 4R 5. Kolmnurga kõrgus (h on ristlõik külje ja selle vastastipu vahel) , mediaan (m on lõik külje keskpunkti ja selle vastastipu vahel. Mediaanid lõikuvad ühes punktis ja see lõikepunkt jaotab mediaa

Matemaatika
thumbnail
15
doc

Mõisted matemaatikas

Ülesanne 1 Aksioom (kreeka keeles axima 'see, mis on vääriline') tähendab üldkeeles väidet, mille tõesuses pole kahtlust. Algarvuks nimetatakse ühest suuremat naturaalarvu, mis jagub vaid arvuga 1 ja iseendaga. Algarvude hulk on lõpmatu. Sajast väiksemad algarvud ((100) = 25) on 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 ja 97. Kaksikuteks nimetatakse selliseid algarve, mille vahe on 2, näiteks 101 ja 103 või 1 000 000 007 ja 1 000 000 009. Ei ole teada, kas kaksikuid on lõpmata palju. Aritmeetiliseks keskmiseks nimetatakse arvu, mis saadakse antud arvude summa jagamisel liidetavate arvuga. Näide 1. On antud arvud 3, 4, 5 ja 6. Leiame nende arvude aritmeetilise keskmise. 1) Leiame summa: 3 + 4 + 5 + 6 = 18. 2) Jagame summa liidetavate arvuga 18 : 4 = 4,5. Seega nende arvude aritmeetiline keskmine on 4,5. Lahendamiseks sobib ka avaldis (3 + 4 + 5 + 6) : 4. Arvkiir on kiir, mille alguspunktis on märgitud arv 0. Edasi on vaba

Matemaatika
thumbnail
4
txt

Matemaatika mõisted 8. klassile

Misted 8. klassile 1. Milline murd on harilik murd? * Harilik murd nitab, mitmeks vrdseks osaks on tervik jaotatud ja mitu sellist osa on vetud. 2. Milline murd on kmnendmurd? Too nide . * Kmnendmurd on komaga arv . nt : 2,14 ; 76,76 ; 16,36 3. Mida nimetatakse murru taandamiseks? * Hariliku murru taandamiseks nimetatakse murru lugeja ja nimetaja jagamist he ja sama nullist erineva arvuga 4. Astmete korrutamine. Too nide. * he ja sama alusega astmete korrutamisel me liidame astendajad ja siis astendame astme alust. nt : a(astmes n) * a(astmes m) = a (astmes n+m) 3(astmes4)* 3 (ruudus) = 3(astmes 6) = 729 5. Astemete astendamine. Too nide. * Astmete astendamisel antendajad korrutame ja siis astendame. nt: (a astmes n) astmes m = a astmes mn ; (2 astmes -3) astmes 4 = 2 astmes -12 6. Astmete jagamine. * Sama alusega astmete jagamisel me lahutame astendajad ja siis astendame astme alust. 7.Negatiivne astendaja. Too nide . * Negatiivse astendajaga aste thendab murdu , mille lugejaks

Matemaatika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun