Kaksikuteks nimetatakse selliseid algarve, mille vahe on 2, näiteks 101 ja 103 või 1 000 000 007 ja 1 000 000 009. Ei ole teada, kas kaksikuid on lõpmata palju. Aritmeetiliseks keskmiseks nimetatakse arvu, mis saadakse antud arvude summa jagamisel liidetavate arvuga. Näide 1. On antud arvud 3, 4, 5 ja 6. Leiame nende arvude aritmeetilise keskmise. 1) Leiame summa: 3 + 4 + 5 + 6 = 18. 2) Jagame summa liidetavate arvuga 18 : 4 = 4,5. Seega nende arvude aritmeetiline keskmine on 4,5. Lahendamiseks sobib ka avaldis (3 + 4 + 5 + 6) : 4. Arvkiir on kiir, mille alguspunktis on märgitud arv 0. Edasi on vabalt valitud ühiklõikude kaugusel järgmised naturaalarvud kasvavas järjekorras. Arvkiirt võime vajaduse korral pikendada kuitahes kaugele. Absoluutväärtus on positiivse arvu ja nulli korral arv ise ning negatiivse arvu absoluutväärtuseks on selle arvu vastandarv
Ruutfunktsioon Sissejuhatav kordamine 1. Teosta tehted. Vastustes vabane negatiivsetest astendajatest. 3 1 2 3 1 a) 2 a b c 3 Lahendus: ; 1 4 2 s 3 t b) 4 5 3 4 s t Lahendus: . 2. Lihtsusta avaldis. a) xy(x + 3y) + (x + y)(x2 2xy y2) Lahendus: xy(x + 3y) + (x + y)(x2 2xy y2) = = x2y + 3xy2 + x3 2x2y xy2 + x2y 2xy2 y3 = = x 3 y3 = = (x y)(x2 + xy + y2) b) (3a 2)2 + (2 + 3a)(2 3a) Lahendus: (3a 2)2 + (2 + 3a)(2 3a) = 9a2 12a + 4 + 4 9a2 = = 8 12a 3. Lahenda võrrand. a) 24x2 + 5x 1 (24x2 6x 12x + 3) = 111 Lahendus: 24x2 + 5x 1 (24x2 6x 12x + 3) = 111;
Teoreemid Kiirteteoreem: Kui nurga haarasid lõigata paralleelsete sirgetega, siis ühel haaral tekkinud lõigud on võrdelised teise haara vastavate lõikudega. Kiirteteoreemi järeldus: Kui nurga haarasid lõigata paralleelsete sirgetega, siis tekivad võrdeliste külgedega kolmnurgad. k sarnasustegur Kaks hulknurka on teineteisega sarnased, kui nende hulknurkade vastavad nurgad on võrdsed ja küljed on võrdelised. Teoreem: Kahe sarnase hulga ümbermõõtude suhe võrdub vastavate külgede suhtega ehk sarnasusteguriga. P / P 1= k Teoreem: Kahe sarnase hulknurga pindalade suhe võrdub nende hulknurkade vastavate külgede suhte ruuduga ehk sarnasusteguri ruuduga. Kitsam variant: Kahe sarnase kolmnurga pindalade suhe võrdub nende kolmnurkade vastavate külgede suhte ruuduga ehk sarnasusteguri ruuduga. KNK (kolmnurkade sarnasuse tunnus kahe külje ja nendevahelise nurga järgi): Kui ühe kolmnurga kaks külge on võrdelised teis
Kallavere Keskkool Jana Smirnova 8.klass PI PÕHIKOOLI MATEMAATIKAS Uurimistöö Juhendajad: Maardu 2012 SISSEJUHATUS Arv, mida tähistatakse kreeka tähega , on üks tuntumaid arve matemaatikas ja sellise suuruse olemasolust sai inimkond aimu juba väga ammuses minevikus. Praeguseks on arvutatud üle 6000000000 komakoha. ligikaudne väärtus on 3,14. Käesolevas töös on uuritud kasutatavust põhikooli matemaatikas. Autor on uurimistöö teemast huvitatud, sest tahtis rohkem tutvuda : mis arv see õieti on ja kus ning milleks seda kasutatakse. Materjali koostamisel on toetutud isiklikele kogemustele ning kasutatud erialaseid õpikuid ja internetimaterjale. Uurimistöö on kirjutatud 20 lehel, sisaldab 7 joonist ja 1 diagrammi. Kirjanduse loetelus on 12 nimetust. Sisaldab kokkuvõtet ja sissejuhatust. Töö koosneb kolmest peatükist
© Allar Veelmaa 2008 PÕHIKOOLI MATEMAATIKA PROOVIEKSAMI ÜLESANDED 2008.a. 1. (7 p.) Lihtsustage avaldis (3m n)(3m + n) (2n + 3m)2 12mn ja arvutage selle täpne 1 väärtus, kui m = 2 ja n = - . 3 2. (7 p.) Võrdkülgse kolmnurga kujulise maatüki külje pikkus on 215 m. Kui palju saab sellelt maatükilt otra (tonnides), kui keskmine saak ühelt hektarilt on 35 tsentnerit. Vastus andke kümnendiku täpsusega. 3. (7 p.) Lahendage võrrand 3x2 + 4x = 7 ja kontrollige selle lahendeid. 4. (7 p.) Juku brutopalk oli aasta alguses 12500 krooni ja seda tõsteti 1. märtsil 7,5% ning palka tõsteti ka 1. aprillil, seekord 2,5% võrra. Kui suur on nüüd Juku brutopalk ja kui mitme protsendi võrra on viimane palk suurem aasta alguses saadud palgast? 5. (8 p). Täisnurkse trapetsi alused on 10 cm ja 6 cm ning lühem haar 5 cm. Leidke
Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad
........................................................................ 5 SULAMID.................................................................................................................................. 6 8. klassi KEEMIA EKSAMI TEEMAD....................................................................................6 Ülesandeid harjutamiseks............................................................................................................8 Reaktsioonivõrrandite koostamine. ............................................................................................9 Aatomi ehituse seos perioodilisussüsteemiga........................................................................... 10 Metalliliste omaduste muutumine perioodilisustabelis.............................................................10 I MÕISTED molekul aine väiksem osake, millel on ainele iseloomulik koostis;koosneb aatomitest.
2007-2008 .. «5» 93 - 100 «4» 69 - 92 «3» 43 - 68 «2» 15 - 42 «1» 0 - 14 1. 4 , «» 1. ............................................................................................. 2. ............................................................................. 3. ......................................................................... 4. 2 0,5 1 ............................................................................ 5. , ................................................................................ 6. .............................................................................................. 7. ...................................................................... 2. 6. , 1. ................+ ................. = BaSO4 2. ................+ ................. = BaSO4 + ...............
Kõik kommentaarid