Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

"kahanevad suurused" - 69 õppematerjali

thumbnail
13
docx

Matemaatiline analüüs I KT (lihtsam variant)

Igas kontrolltöös on 4 küsimust, millest üks on valitud jämedas kirjas (bold face) olevate teemade hulgast (see on kõige olulisem materjal), 2 küsimust on valitud ülejäänud teemadest ja viimase 4-nda küsimuse all on võimalik kirjutada omal valikul 1/4-1/2 lk teksti antud programmi ulatuses. 1. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusüuhik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvteljepunktidele seada vastavusse reaalarvud. Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a − ε, a + ε), kus ε > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a − ε, a + ε) siis ja ainult siis, kui selle arvu kaugus arvteljelon arvust a väiksem kui ε, st |x − a| < ε. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a − ε, a], kus ε > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse (a − ε, a] siis ja ainult siis, kui sel...

Matemaatika → Kõrgem matemaatika
14 allalaadimist
thumbnail
4
pdf

Matemaatiline analüüs 1, teooria, spikker, kontrolltöö 1, matan

Parameetrilisel kujul antud funktsioon Funktsiooni piirväärtuse definitsiooni laienemine juhtudele a = ± ja b = 1.Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda 4.Üksühese funktsiooni ja pöördfunktsiooni definitsioonid. Vaatleme funktsiooni y=f(x). Toome lisaks muutujale x ± absoluutväärtuse Seosed funktsiooni ja tema pöördfunktsiooni ja y sisse ka kolmanda muutuja t. x= (t). Siis saab ka Funktsioonil f on piirväärtus kohal a, kui suvalises piirprotsessis xa, mis omadused. Reaalarvude ja lõpmatuste ümbrused. määramispiirkondade ja väärtuste hulkade vahel, vastastikune muutuja y avaldada parameetri t kaudu. y = (t). ...

Matemaatika → Algebra ja analüütiline...
70 allalaadimist
thumbnail
2
docx

Metsandus ja metsamajandus

Metsandus ja metsamajandus Metsad katavad umbes 30% maismaast (4 miljardit hektarit), kuid jaotuvad piirkonniti väga ebaühtlaselt. Maailma metsarikkamad riigid: Venemaa, Brasiilia, Kanada, USA, Hiina, Austraalia. Euroopas Rootsi, Soome, Eesti ja Norra. Valdav riiklik metsaomand: 1. Euroopas riigimetsi 90% 2. Põhja-Ameerikas 64% 3. Aasias 94% 4. Aafrikas 100% 5. Venemaal 100% Vaid kolmandik maailma metsadest on esmased nn looduslikud metsad, mida inimene oma majandustegevuse käidus pole muutnud. Hoiumetsad: Mets, kus ei tehta mitte mingisugust majandustegevust. Inimtegevus piirdub looduse kaitsmisega. Raied on lubatud vaid liigikaitselisel või looduslikkuse taastamise eesmärgil. Kaitsemets: Keskkonnaseisundi kaitsmiseks määratud mets kuulub kaitsemetsa kategooriasse. Kui hoiumetsas kaitstakse metsa ennast, siis kaitsemets kaitseb omakorda midagi. Selleks võivad olla rannad, kaldad, allikad looalad, põhjavesi, erosiooniohtu, saastatust. ...

Geograafia → Geograafia
48 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I

Arvtelg ­ sirge, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Reaalarvu absoluutväärtus - nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Absoluutväärtuste omadused: |-a|=|a| |ab|=|a||b| |a+b||a|+|b| |a-b|| |a|-|b| | Reaalarvude ja lõpmatuste ümbrused - Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist poollõiku [a, a+), kus > 0. Suuruse lõpmatus ümbruseks nimetatakse suvalist vahemikku (M,), kus M > 0. Suuruse miinus lõpmatus ümbruseks nimetatakse suvalist vahemikku (-,-M), kus M > 0. Tõkestatud hulgad - Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (a, b) nii, et A (a, b). Jääv suurus ­ suurus, mille arvuline väärtus ei muutu. Muutuv suurus ­ suurus, m...

Matemaatika → Matemaatiline analüüs 1
55 allalaadimist
thumbnail
6
docx

Matemaatilise analüüsi teooriakontrolltöö kordamisküsimused vastustega

1.Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Tõkestatud hulgad. Definitsioon Reaalarvudest koosnevat hulka nimetatakse tõkestatuks, kui leidub selline positiivne arv nii, et iga korral kehtib võrratus . Hulk on tõkestatud, kui kõik selle hulga elemendid kuuluvad nulli ümbrusesse Näide: Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik vahemik (a;b) nii et AC(a;b) Tõkestamata hulgad. Näide: Näiteks lõpmatu vahemik (-, a) vahemik ja [a; ) lõpmatu poollõik. 2. Reaalarvu ümbrus. Arvtelg. Reaalarvu a absoluutväärtus (näiteks lihtsustage ). Absoluutväärtuse omadused. Tingimuse esitamine arvteljel. Reaalarvu a vasakpoolne ja parempoolne ümbrused. Reaalarvu a ümbrus nimetatakse suvalist vahemiku (a ­ , a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a ­ , a + ) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st ...

Matemaatika → Matemaatiline analüüs i
27 allalaadimist
thumbnail
15
docx

Matemaatiline analüüs I kontrolltöö

Matemaatiline analüüs I kontrolltöö Punktid 1-22 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. a. Arvtelje mõiste Arvteljeks nim sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Igale arvtelje punktile vastab ainult üks reaalarv ja vastupidi. b. Reaalarvu absoluutväärtus Reaalarvu absoluutväärtuseks nimetatakse järgmist mittenegatiivset arvu |a|= a, kui a 0, -a, kui a<0 c. Loetleda absoluutväärtuse omadused |-a|=|a|; |ab|=|a|*|b|; |a+b||a|+|b|;|a-b||a|-|b| d. Reaalarvude ja lõpmatuste ümbrused d.i. Reaalarvu a ümbruseks nim suvalist vahemikku (a-,a+), k...

Matemaatika → Matemaatiline analüüs
54 allalaadimist
thumbnail
13
docx

Matemaatiline analüüs I KT

Matemaatiline analüüs 1. Arvtelg ­ sirge, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Öeldu põhjal saab reaalarvud samastada sirge (arvelje) punktidega. Absoluutväärtuse mõiste ­ reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset arvu. Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunktivahelist kaugust arvteljel. Absoluutväärtuste omadused: Reaalarvude ja lõpmatuste ümbrused ­ Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a ­ ; a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-; a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x-a| < . Reaalarvu vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a-], kus >0. Arv x kuulub arvu ...

Matemaatika → Matemaatiline analüüs
139 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs

Täisprogramm Selle programmi järgi saab ette valmistada teooria kontrolltööde B (so raskemateks) variantideks. Esimese kontrolltöö materjal hõlmab lõike 1 ­ 22 ja teise kontrolltöö materjal hõlmab lõike 23 - 45. Igas kontrolltöös on 5 küsimust. Üks küsimus viiest on valitud jämedas kirjas (bold face) olevate teemade hulgast. Vähemalt kaks küsimust viiest sisaldavad tõestusi, tuletuskäike või põhjendusi. Programm järgib otseselt õppejõu konspekti. Kontrolltöödes ei küsita konspektis esitatud näiteid ja väikeses kirjas olevaid osi. 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. V: Arvtelje mõiste: arvteljeks nim. sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Reaalarvu absoluutväärtus: reaalarvu a absoluutväärtuseks nim. järgmist mittenegatiivset reaalarvu. Reaalarvu a absoluutväärtust a võib tõlgendada k...

Matemaatika → Matemaatiline analüüs
232 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs II teooria töö

1. · Arvtelje mõiste ­ Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | · Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. o Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. o Reaalarvu a parempoolseks ümbruseks nimetat...

Matemaatika → Matemaatiline analüüs 2
96 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I - I teooria töö

1. · Arvtelje mõiste ­ Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | · Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. o Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. o Reaalarvu a parempoolseks ümbruseks nimetat...

Matemaatika → Matemaatika analüüs i
489 allalaadimist
thumbnail
9
pdf

Vähendatud programmi (A) ESIMENE teooriatöö

LIISI KINK 1 MATEMAATILINE ANALÜÜS I Vähendatud programm Selle programmi järgi saab ette valmistada teooria kontrolltööde A (so lihtsamateks) variantideks. Esimese kontrolltöö materjal hõlmab lõike 1 ­ 17 ja teise kontrolltöö materjal hõlmab lõike 18 - 33. Igas kontrolltöös on 4 küsimust, millest üks on valitud jämedas kirjas (bold face) bold face olevate teemade hulgast (see on kõige olulisem materjal), 2 küsimust on valitud ülejäänud teemadest ja viimase 4-nda küsimuse all on võimalik kirjutada omal valikul 1/4-1/2 lk teksti antud programmi ulatuses. Programm järgib otseselt Jaan Janno konspekti. Kontrolltöödes ei küsit...

Matemaatika → Matemaatika analüüs i
95 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I 1. teooria KT

1. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| =a kui a 0; -a kui a < 0. Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a||b| 3. |a + b| |a| + |b| 4. |a - b| ||a| - |b|| Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - ,a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-,a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Tõkestatud hulgad. Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (a,b) nii, et A (a,b). 2. Jäävad ja muutuvad suurused. Suurust, mis võib omandada erinevaid arvulisi väärtusi, nim...

Matemaatika → Matemaatiline analüüs 1
111 allalaadimist
thumbnail
2
docx

Seinad

SEINAD Välisseinte ülesanne on: sisekeskkonna eraldamine väliskeskkonnast, Tarindite kandmine, kaitse ilmastikutegurite vastu, tagada hoone energiatõhusus Välisseintele esitatavad nõuded: Kestvus, vastupidavus, ilmastikukindlus, arhitektuurne sobivus, välisilme püsivus, soojapidavus, õhupidavus, niiskustehniline toimivus, helipidavus, tulepüsivus, majanduslik ökonoomsus Välisseinte liigitus Materjali järgi: looduskivist, tehiskivist, puidust, metallist, klaasist Paigaldavate detailide suuruse järgi: Tellisseinad, väikeplokk-seinad, suurplokkseinad, puitkarkass seinapaneelid, raudbetoon paneelseinad, puitkarkass ruumpaneelid Looduslikust kivist konstruktsioonide vastupidavus sõltub kasutatavate müürkivide keemilisest koostisest ja struktuurist. Lubjakivid on üsna tundlikud ilmastiku mõjude suhtes. Liivakivid on vastupidavamad kui Tellised Kergseinte puhul lähtutakse seina kandva osa laiusel vaj...

Ehitus → Ehitusviimistlus
64 allalaadimist
thumbnail
158
pptx

Füüsikalise looduskäsitluse alused

Füüsikalise  looduskäsitluse  alused Füüsika üldmudelid Füüsikalised objektid ja  suurused • Füüsika üldmudelid: • - keha (kindlad piirjooned, mõõtmed, mass) • -- punktmass (keha mass koondununa ühte punkti) • - füüsikalised suurused (kirjeldab mingi loodusobjekti ühte kindlat omadust) • Füüsikalised objektid on olemas objektiivselt, st sõltumatult mistahes vaatlejast või koguni inimkonnast tervikuna. • Füüsikalised suurused on vaatlejate ühised kujutlused, üldmudelid, mille abil on mugav füüsikalisi objekte kirjeldada. Füüsikalised objektid ja  suurused • Väljad – mitteainelised objektid, mõjutavad kehi ja omavad energiat, ei saa kasutada ruumi ja aja mõistet. • Kehad – ainelised objektid, saab uurida nende kuju, värvust, mõõtmeid, koostist, omavahelist liikumist, vastastikmõju, saab kasutada ruumi ja aja mõisteid. • Nähtused – aineliste ja väljeliste objektidega toimuvad muutused. Füüsi...

Füüsika → Füüsika
13 allalaadimist
thumbnail
23
docx

MATEMAATILINE ANALÜÜS TÖÖ VASTUSED

1. · Arvtelje mõiste ­ Arvteljeks kutsume sirget, millel on positiivne suund, määratud nullpunkt ja pikkusühik. Arvteljega on võimalik seada vastavusse kõik reaalarvud, kus ühele reaalarvule vastab ainult üks arvtelje punkt. · Reaalarvu absoluutväärtus ­ · Absoluutväärtuse omadused · Reaalarvu lõpmatuseks nimetame suvalist vahemikku (a-,a+), kus >0 on ümbruse raadius · Reaalarvu vasakpoolseks lõpmatuseks nimetame suvalist vahemikku (a-,a], kus >0 · Reaalarvu parempoolseks lõpmatuseks nimetame suvalist vahemikku [a, a+), kus >0 · Suuruse lõpmatus ümbruseks nimetame hulka (M,), kus M>0 · Suuruse miinus lõpmatus ümbruses nimetame hulka (-,-M), kus M>0 · Hulka A nimetame tõkestatud hulgaks, kui A on määratud lõplikus vahemikus (a,b) 2. · Jääv suurus on suurus mille väärtus ei muutu · Muutuv suurus on suurus, millele võib omastada erinevaid väärtuseid ...

Matemaatika → Matemaatika analüüs i
105 allalaadimist
thumbnail
20
docx

MATEMAATILINE ANALÜÜS I

MATEMAATIKA EKSAM. 1. Muutuvad suurused (üldiselt). 1)konstantsed suurused 2)muutuvad suurused NT: ühtlase liikumise korral on kiirus konstante suurus, teepikkus aga muutuv suurus. Funktsiooni mõiste (definitsioon, tähistused, näited). Funktsiooni esitusviise (piltlik, valemiga, tabelina, nooldiagrammina, sõnadega jne). Ühesed, paaris- ja paaritud, perioodilised, kasvavad ja kahanevad funktsioonid (definitsioonidega). Definitsioon: muutuvat suurust y nimetatakse muutuva suuruse x funktsiooniks, kui suuruse x igale väärtusele on vastav y üks väärtus Tähistused: argument(muutuja) x; argument(muutuja) y; määramispiirkond X; muutumispiirkond Y Näited: 2. Funktsiooni graafik (definitsioon, piltlik esitus). Definitsioon: funktsiooni graafik= {(x,f(x)): x∈X} Piltlikult: 3. Pöördfunktsioon (definitsioon). Näiteid. Kuidas leida pöördfunktsioone? Defin...

Matemaatika → Matemaatiline analüüs 1
36 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks...

Matemaatika → Matemaatiline analüüs
484 allalaadimist
thumbnail
24
pdf

MATEMAATILINE ANALÜÜS I. KORDAMISKÜSIMUSED

MATEMAATILINE ANALÜÜS I. KORDAMISKÜSIMUSED 1. Muutuvad suurused (tähistus, jaotus). Matemaatilises analüüsis tähistatakse muutujad väikeste tähtedega (x, y, a jne). Näiteid muutujate vahelistest suhetest: „Patsiendi vererõhk sõltub ravimite manustamise hulgast“, „Ringi pindala sõltub raadiusest“ Jaotus: a) Konstantsed suurused – ei muutu, omavad alati ühte ja sama väärtust N: ühtlane liikumine – kiirus on konstantne, teepikkus on muutuv suurus) b) Muutuvad suurused N: mitteühtlane liikumine – nii kiirus kui teepikkus muuutvad 2. Funktsiooni mõiste (definitsioon, tähistused, näited). DEF. Muutuvat suurust y nimetatakse muutuva suuruse x funktsiooniks, kui mingi eeskirjaga on suuruse x igale väärtusele seatud vastavusse suuruse y üks väärtus. Asjaolu, et y on x-i funktsioon, tähistatakse y = f(x) • Muutujat x nimetatakse sõltumatuks muutujaks (ehk argumendiks). • Muutujat y nimetatakse sõltuvaks muutujaks. • ...

Matemaatika → Matemaatiline analüüs 1
29 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

1. Kollokvium 1. Hulga mõiste. Järjestatud hulk. Tehted hulkadega. Arvuhulgad. Teoreem. Ei leidu ratsionaalarvu, mille ruut on 2 (tõestada). Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Hulk koosneb elementidest, kusjuures elemendid ei kordu ja nende järjestus ei ole kindlaks määratud. Järjestatud hulk koosneb samuti elementidest, kuid selles hulgas on iga kahe elemendi kohta võimalik öelda, kumb neist on eelnev, kumb järgnev. Tehted hulkadega: * Hulkade A ja B ühendiks ehk summaks nimetatakse hulka, mille moodustavad kõik kas hulka A, hulka B või mõlemasse kuuluvad elemendid. Hulkade A ja B ühendit tähistatakse * Hulkade A ja B ühisosaks ehk korrutiseks nimetatakse hulka, mille moodustavad kõik üheaegselt nii hulka A kui ka hulka B kuuluvad elemendid. Hulkade A ja B ühisosa tähistatakse * Hulkade A ja B vaheks nimetatakse kõigi selliste elementide hulka, mis kuuluvad hulka A, kuid ei...

Matemaatika → Matemaatiline analüüs
197 allalaadimist
thumbnail
7
docx

MATEMAATIKA ANALÜÜS 1 KT 1 vastused

1. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt,pikkuühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Võib väita,et igale arvtelje punktile vastab üks ja ainult üks realarv ja vastupidi:igale realarvule vastab üks ja ainult üks avtelje punkt. Olgu tasandil antud kaks arvtelge, mis on ristuvad oma nullpunktides. Need moodustavad tasandil nn koordinaatteljestiku. Tasandi punkti ristkoordinaatideks nimetatakse selle punkti ristprojektsioone koordinaatttelgedele. Igale tasandi punktile vastab üks ja ainult üks ristkoordinaatidest moodustatud arvupaar ja vastupidi: igale arvupaarile vastab üks ja ainult üks tasandi punkt. Matemaatikas tähistatakse tavaliselt ühel ristuvatest koordinaattelgedest olevat olevat arvu x-ga ja teisel koordinaatteljel oleval arvu y-ga. Sel juhul on tegemist xy-teljestikuga ja me saame rääki...

Matemaatika → Matemaatika analüüs i
231 allalaadimist
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a 0 -a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-, a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse (a - , a] siis...

Matemaatika → Matemaatiline analüüs i
106 allalaadimist
thumbnail
6
pdf

Matemaatilise analüüsi I kollokviumi vastused

1*(Normi ja kauguse def. Näidata, et reaalarvu abs.väärtus rahuldab normi ja aksioome)Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile seab vastavusse skalaari , kusjuures on täidetud järgnevad tingimused: 1). 2). 1). *Kauguseks ruumis V nimetatakse reeglit, mis igale kahele selle ruumi elemendile seab vastavusse skalaari d(u,v), kusjuures on täidetud järgnevad tingimused: 1). 2). 3). *Lause: Reaalarvu absoluutväärtus rahuldab normi aksioome. Tõestus: 2*( -ümbruse definitsioon. Reaalarvu ühepoolsed ümbrused. Lõpmatuse ümbrused)Punkti - ümbrukseks nim. hulka *Reaalarvu a R korral saame U(a) = {x R|a - < x < a + }. *Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. *Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist poollõiku [a, a + ), kus > 0. *Suuruse lõpmatus ümbruseks nimetatakse suvalist vahemikku (M , ), kus M > 0. *Suuruse miinus lõpmatus ...

Matemaatika → Matemaatika analüüs i
136 allalaadimist
thumbnail
25
doc

MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega

MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a ≥ 0 −a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | − a| = |a| 2. |ab| = |a| |b| 3. |a + b| ≤ |a| + |b| 4. |a − b| ≥ | |a| − |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a − ε, a + ε), kus ε > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a−ε, a+ε) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui ε, st |x − a| < ε. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a − ε, a], kus ε > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse...

Matemaatika → Matemaatiline analüüs 1
44 allalaadimist
thumbnail
2
doc

Matemaatiline analüüs

Mitme muutuja funktsiooni mõiste Def: Kui igale x-I ja y-I väärtuste paarile mingis piirk D on vastavusse seatud muutuja z teatud kindel väärtus, siis öeldakse et z on kahe muutuja y ja x funktsioon. z=(x; y) või z=z(x; y) või z=(x; y) või z=F(x; y). (joon) D-x, y tasandi punktide hulk; - piirk D rajajoon e raja. Def1: Piirk D nim lahtiseks kui ta ei sisalda ühtegi oma rajajoone punkti; Def2: Piirk D nim kinniseks kui ta sisaldab kõiki oma rajajoone punkte. Näiteks on kaks hulka: A={(x; y)x2+y2

Matemaatika → Matemaatiline analüüs
266 allalaadimist
thumbnail
13
rtf

Seinad

Seinad Välisseinte ülesanne on: Sisekeskkonna eraldamine väliskeskonnast, Tarindite kandmine, Kaitse ilmastikutegurite vastu, Tagada hoone energiatõhusus. Hoone seintele esitatavad nõuded. · Tugeva ja püsiva kogu kasutusaja vältel. · Sooja- ja õhupidavus. · Helipidavus. · Süttivus ja tulepüsivuspiir peavad vastama hoone tulepüsivusastmele. · Ökonoomsus. Arhitektuurne sobivus. Seinte liigitamine asukoha järgi. Välisseinad Siseseinad Välisseinte liigitamine töötamise iseloomu järgi. Kandvad - lisaks omakaalule kannavad veel koormusi katuselt, vahelagedelt jne. Ennastkandvad - võtavad vastu ainult omakaalu ja tuulekoormust hoone välisseina kõrguses. Mittekandvad - võtavad vastu koormusi omakaalust ja tuulest ainult ühe korruse ulatuses. Rippuvad - kinnituva...

Ehitus → Ehitus
22 allalaadimist
thumbnail
7
pdf

Vähendatud programmi (A) TEINE teooriatöö

LIISI KINK 10 MATEMAATILINE ANALÜÜS I Teooria töö 2 18) Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. = + , kus = Mõlemad liidetavad on lõpmatult kahanevad protsessis 0. Diferentsiaal on sama järku lõpmatult kahanev suurus kui ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus suhtes. Kehtib ligikaudne valem kui 0. 19) Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat' lemma (tõestust ei küsi). Öeldakse, et funktsioonil on punktis lokaal...

Matemaatika → Matemaatika analüüs i
103 allalaadimist
thumbnail
8
docx

Rakendusstatistika kokkuvõte

Juhuslik sündmus on midagi, mis mingi katse tulemusel võib toimuda. Katse on mingi tingimuste kompleksi realiseerumine. Elementaarsündmused on mingid üksteist välistavad sündmused, millest iga katse korral üks tingimata toimub. Juhuslikud sündmused: *vastastikku välistuvad sündmused- ei sisalda samu elementaarsündmusi *vastastikku mittevälistuvad sündmused- sisaldavad samu elementaarsündmusi *sündmuste sisalduvus- kui toimub A, toimub ka B *vastansündmus- kõik elementaarsündmused, mis ei sisaldu sündmuses Tõenäosus iseloomustab sündmuse esinemissagedust katsetes. Tõenäousese määramisviisid: klassikalised(kombinatoorne, geomeetriline, statistiline), mtteklassikalised(subjektiivne,intersubjektiivne) Juhuslikuks suuruseks nim suurust, mis järjekordse katse tulemusel omandab mingi mittennustatava väärtuse mingist võimalikust väärtuste hulgast. Diskreetne juhuslik suurus: võimalike väärtuste hulk on lõplik Pidev juhuslik suur...

Matemaatika → Rakendusstatistika
297 allalaadimist
thumbnail
12
odt

Matemaatiline analüüs I 1. kollokvium

1. Norm ja kaugus (meetrika). Ümbrused. ε-ümbruse definitsioon. Reaalarvu ühepoolsed ümbrused. Lõpmatuse ümbrused. Kauguseks ruumis V nimetatakse reeglit, mis igale kahele selle ruumi elemendile u,v ∈V seab vastavusse skalaari d(u,v) ∈R, kusjuures on täidetud järgmised tingimused: 1 ∀u,v∈V d(u,v) ≥ 0; d(u,v) = 0⇔v = u 2 ∀u,v∈V d(u,v) = d(v,u) 3 ∀u,v,w∈V d(u,v) ≤ d(u,w) +d(w,v) Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile u ∈ V seab vastavusse skalaari ||u|| ∈ R, kusjuures on täidetud järgmised tingimused: 1)∀u ∈ V ||u|| ≥ 0; ||u|| = 0 ⇔ u = 0, 2)∀u ∈ V, α ∈ R ||αu|| = |α| ||u||, 3)∀u, v ∈ V ||u + v|| ≤ ||u|| + ||v|| Punkti ümbrusest võib mõelda kui niisugusest seda punkti sisaldavast hulgast, kus ükskõik mis suunas saab punktist õige pisut eemalduda ilma sellest hulgast väljumata. Punkti ε-ümbrus Hulka Uε(a) := {x ∈ V|d(a, x) < ε, ε > 0} nimetatakse punkti a ∈ V ε-ümbr...

Matemaatika → Matemaatiline analüüs 1
66 allalaadimist
thumbnail
11
docx

ÜLEVAADE TÕENÄOSUSTEOORIA PÕHIMÕISTETEST

1 ÜLEVAADE TÕENÄOSUSTEOORIA PÕHIMÕISTETEST Juhuslik sündmus - midagi mis mingi katse tulemusel võib toimuda. Katse - mingi tingimuste kompleksi realiseerumist (mingit toimingut). Lähtepunktiks katsega seotud sündmustel on elementaarsündmuste ruum , mis koosneb elementaarsündmustest (mis on üksteist välistavad sündmused, iga katse korral toimub tingimata üks). Tingimused elementaarsündmuste ruumile on: 1) vastastikune välistatus: korraga toimub vaid üks elementaarsündmus: ij = Ø (ij), 2) täielikkus: alati mingi elementaarsündmus toimub: i = . nt. Kaardi valik 52'sest kaardipakist Juhuslike sündmustega seonduvad põhimõisted: Vastastikku välistuvad sündmused: mis ei sisalda samu elementaarsündmusi (nt A: ruutu kaart, B: ärtu kaart) Vastastikku mittevälistuvad sündmused: mis sisaldavad samu elementaarsündmusi (nt A : ruutu kaart, B: piltkaart) Sündmuste sisalduvus: kui ...

Matemaatika → Rakendusstatistika
13 allalaadimist
thumbnail
4
odt

Matemaatiline Analüüs I kollokvium spikker

1. Norm ja kaugus (meetrika). Ümbrused. ε-ümbruse definitsioon. Reaalarvu ühepoolsed Lõpmata väikeseid (suuri) suurusi α(x) ja β(x) piirprotsessis x → a nimetatakse ekvivalentseteks ümbrused. Lõpmatuse ümbrused selles piirprotsessis, kui Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile u ∈ V seab vastavusse skalaari || 8. Funktsiooni pidevus punktis. Uhepoolne pidevus. Katkevuspunktide liigid. u|| ∈ R, kusjuures on taidetud järgmised tingimused: Funktsiooni f(x) nimetatakse pidevaks punktis a, kui on taidetud kolm tingimust: 1 ∀u ∈ V ||u|| >= 0; ||u||= 0 ⇔ u = Θ 1) ∃f(a); 2) ∃ limx→a f(x); 3) limx→a f(x) = f(a). Tahistatakse f(x) ∈ C(a) 2 ∀u ∈ V, α ∈ R ||αu|| = |α|||u|| ...

Matemaatika → Matemaatiline analüüs
73 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs 2 KT

KT 2, MAT. ANALÜÜS 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? Tõestada ei ole vaja.  ∆y = f’(a)∆x + β  Diferentsiaal ja jääkliige on lõpmatult kahanevad protsessis ∆x → 0. 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat’ lemma (tõestust ei küsi). Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ) korral kehtib võrratus f(x) ≤ f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ ) korral kehtib võrratus f(x) ≥ f(x1).  Fermat’ lemma - kui funktsioonil f on pun...

Matemaatika → Matemaatika
14 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I 1. kollokvium

1* Normi ka kauguse Def. 1o puudu ||f||∞ = sup|f(x)|(x∈X) 5*(Jada definitsioon. Koonduvad jadad , jada piirväärtus. Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile u ∈V Koonduva jada piirväärtuse omadused + tõestus) piirväärtuse ühesuse tõestus.jada Jadaks nimetatakse funktsiooni, mille määramispiirkonnaks on naturaalarvude hulk N seab vastavusse skalaari ¿∨u∨¿ ∈ R , kusjuures on täidetud ...

Matemaatika → Matemaatiline analüüs 1
40 allalaadimist
thumbnail
22
docx

Matemaatiline analüüs (vähendatud programm)

Matemaatiline analüüs (vähendatud programm) KT nr. 1 Igas kontrolltöös on 4 küsimust, millest üks on valitud jämedas kirjas (bold face) olevate teemade hulgast (see on kõige olulisem materjal), 2 küsimust on valitud ülejäänud teemadest ja viimase 4-nda küsimuse all on võimalik kirjutada omal valikul 1/4-1/2 lk teksti antud programmi ulatuses. 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon.  Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Öeldu põhjal saab reaalarv...

Matemaatika → Matemaatiline analüüs i
18 allalaadimist
thumbnail
2
pdf

Kollokvium I, 2012

Teemad: 5. Öeldakse, et { xn} on Cauchy jada ehk fundamentaaljada, kui iga > 0 korral leidub C N, 1. Norm ja kaugus (meetrika). Ümbrused. -ümbruse definitsioon. Reaalarvu ühepoolsed et iga naturaalarvu n > C ja naturaalarvu p korral kehtib võrratus |xn+p - xn| < . ümbrused. Lõpmatuse ümbrused. Lause. Jada { xn} koondub parajasti siis, kui ta on Cauchy jada. 2. Funktsiooni mõiste. Reaalmuutuja ühene funktsioon. Määramispiirkond, muutumispiirkond. Jada kuhjumispunktiks nim. arvu, mille igas ümbruseson lõpmata palju vaadeldava jada Paaris ja paaritud funktsioonid. Perioodilised ja antiperioodilised funktsioonid. liikmeid. Pöördfunktsioon. Monotoonsed funktsioonid. Kasvavad ja kahanevad funktsioonid. Lause. Ar...

Matemaatika → Matemaatika analüüs i
122 allalaadimist
thumbnail
7
docx

Matemaatiline analüüs 1 teooria

1. Mitme muutuja funktsiooni definitsioon. Mitme muutuja funktsiooni määramispiirkonna definitsioon (kahe ja kolme muutuja funktsiooni määramispiirkond). Erinevad piirkonnad, piirkonna rajajoon. Tõkestatud piirkond. Kui kahe teineteisest sõltumatu muutuva suuruse x ja y igale väärtuspaarile (x;y) mingisugusest nende muutumispiirkonnast D vastab suuruse z väärtus, siis öeldakse, et z on kahe sõltumatu muutuja x ja y funktsioon, mis on määratud piirkonnas D. Kahe muutuja funktsiooni z märgitakse kujul z=f(x,y). Argumentide x ja y väärtuspaaride (x;y) hulka, mille puhul funktsioon z=f(x,y) on määratud, nim. selle funktsiooni määramispiirkonnaks. Kui x ja y iga väärtuspaari kujutada xy-tasapinna punktina M(x;y), siis funktsiooni määramispiirkonda kujutab teatud punktide hulk tasapinnal. Ka seda punktide hulka nim. funktsiooni määramispiirkonnaks. Funktsiooni määramispiirkonnaks võib olla ka kogu tasapind. Edaspidi tegeleme peamiselt niisugu...

Matemaatika → Matemaatiline analüüs 1
84 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs I 1. kt teooria

Täisprogramm Selle programmi järgi saab ette valmistada teooria kontrolltööde B (so raskemateks) variantideks. Esimese kontrolltöö materjal hõlmab lõike 1 ­ 22 ja teise kontrolltöö materjal hõlmab lõike 23 - 45. Igas kontrolltöös on 5 küsimust. Üks küsimus viiest on valitud jämedas kirjas (bold face) olevate teemade hulgast. Vähemalt kaks küsimust viiest sisaldavad tõestusi, tuletuskäike või põhjendusi. Programm järgib otseselt õppejõu konspekti. Kontrolltöödes ei küsita konspektis esitatud näiteid ja väikeses kirjas olevaid osi. 1. Def. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Def. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: Absoluutväärtuste omadused: · |-a|=|a| · |ab|=|a||b| · |a+b||a|+|b| · |a-b|| |a|-|b| | Reaalarvude ja lõpmatuste ümbrused: Def. Rea...

Matemaatika → Matemaatika analüüs i
297 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs I 1 kt teooria

Täisprogramm Selle programmi järgi saab ette valmistada teooria kontrolltööde B (so raskemateks) variantideks. Esimese kontrolltöö materjal hõlmab lõike 1 ­ 22 ja teise kontrolltöö materjal hõlmab lõike 23 - 45. Igas kontrolltöös on 5 küsimust. Üks küsimus viiest on valitud jämedas kirjas (bold face) olevate teemade hulgast. Vähemalt kaks küsimust viiest sisaldavad tõestusi, tuletuskäike või põhjendusi. Programm järgib otseselt õppejõu konspekti. Kontrolltöödes ei küsita konspektis esitatud näiteid ja väikeses kirjas olevaid osi. 1. Def. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Def. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: Absoluutväärtuste omadused: · |-a|=|a| · |ab|=|a||b| · |a+b||a|+|b| · |a-b|| |a|-|b| | Reaalarvude ja lõpmatuste ümbrused: Def. Rea...

Matemaatika → Matemaatiline analüüs 2
104 allalaadimist
thumbnail
11
doc

Matmaatiline analüüs I 1. teooriatöö konspekt

Matemaatiline analüüs I I KT 1. Arvteljeks nimetatakse sirget, millel on maaratud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid parameetreid saab punktidele teljel märkida kõik reaalarvud. Igale reaalarvule vastab arvteljel ainult üks koht ja vastupidi. Absoluutväärtus on punkti kaugus koordinaatide alguspunktist. |a| =a kui a 0 -a kui a < 0 . Absoluutväärtuste omadused 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused Reaalarvu a ümbruseks nimetatakse suvalist lõiku (a-;a+), kus >0 on ümbruse raadius. Arv x kuulub a ümbrusesse siis ja ainult siis, kui punkti x kaugus a- st on väiksem ümbruse raadiusest | x-a| < Suuruse lõpmatus ümbrust nimetatakse suvalist vahemikku (M; ), kus M>0. Arv x kuulub lõpmatuse ümbrusesse kui x>M Suuruse miinus lõpmatus ümbrust nimetat...

Matemaatika → Matemaatiline analüüs
247 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H...

Matemaatika → Matemaatika
42 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonom...

Matemaatika → Matemaatiline analüüs
48 allalaadimist
thumbnail
15
docx

Informaatika ja biomeetria teooria eksam

Informaatika ja biomeetria teooria eksam 1.LOENG Informaatika - info struktuuri, hankimist, töötlemist ja esitamist käsitlev teaduse ning tehnika haru. Arvutiõpetus - sama asi aga kitsam Infotehnoloogia - sama asi aga laiem Informatsioon ehk teave - andmeid ja teateid ● Informatsioon eristub teadmetest selle poolest, et andmed võivad olla töötlemata kujul faktid, millest üldistamise või muu töötlemise järel saab informatsioon. Vahetu info - kogud/ õpid midagi sinule uut (isegi kui ühiskonnale on vana info) Vahendatud info - teatud, räägid informatsioon ● Suurem osa meie infost on vahendatud Bait on kõige levinum infohulga mõõtühik, tähis B. Infoühiskonna ajalooline areng Kirjakeele ja tähestiku leiutamine võimaldas edastada inimkonna talletatud kogemusi ja infot, ilma et oleks vajalik vahetu kontakt info koguja ja selle hilisema o...

Informaatika → Arvuti
14 allalaadimist
thumbnail
8
docx

Epidemioloogia konspekt

1. Epidemioloogia on rahvastervishoiu, kliinilise meditsiini ja statistika ühisosa. Käsitleb haiguste ja terviseseisundite levikut inimpopulatsioonis. a. Uurib tervisega/haigusega seotud seisundite ja sündmuste esinemist ja mõjureid rahvastikurühmades. b. Uurib uurimistulemuste rakendamist tervisega/haigusega seotud probleemide lahendamisel rahvastikurühmades. c. Ühesõnaga viib läbi igasuguseid uuringuid, et saada aimu erinevate tegurite mõjust jne d. Saame ise uurida ja uuringuid tõlgendada tänu epidemioloogiale. e. Klassikaline epi ­ tegeles ajalooliselt nakkushaiguste uurimisega rahvastikud. f. Moodne epi ­ uurib nii nakkushaigusi kui ka mittenakkushaiguslikke haigusi ja tervist rahvastikurühma tasandil. g. John Snow ­ oletas, et joogivesi on sobiv haiguse edasikandja inimeselt inimesele (koolera). h. James Lind ­ merendushügieeni a...

Meditsiin → Epidemioloogia
30 allalaadimist
thumbnail
22
docx

Kõrgem matemaatika 1 kordamisküsimused 2017/2018

Kõrgem matemaatika 1 kordamisküsimused 2017/2018 1. Maatriksi definitsioon. Maatriksi elemendid. Maatriksi järk. Ruutmaatriks. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Vastandmaatriks. Lineaarsete tehete omadused. Transponeeritud maatriks. Maatriks on arvude, funktsioonide või muude elementide korraldatud kogum × . Maatriksil on m rida ja n veergu, kus a11; a12; ...a1n; jne on maatriksi elemendid. Kui me räägime järkudest, siis esimest järku matriks on a, teist on a, a, a, a, kui räägime kolmandat järku siis a,a,a,a,a,a,a,a,a (9) Ruutmaatriksi ridade ja veergude arv on sama. Kui me räägime skalaariga korrutamisest, see tähendab lihtslat arv korrutame matriksiga Maatriksit, milles kõik elemendid on nullid, nimetatakse nullmaatriksiks ja tähistatakse . Maa...

Matemaatika → Kõrgem matemaatika
139 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

YMM3731 Matemaatiline analu¨u¨s I 2007/08 ~o.-a. su¨gissemestril 3,5 AP 4 2-0-2 E S Dots. Lembit Pallas TTU¨ Matemaatikainstituut V-404, tel. 6203056 e-post: [email protected] K¨asitletavad teemad on toodud punktide kaupa. Neid punkte tuleb vaadelda ka kui kollokviumide ja eksami teooriak¨ usimusi. 1. Funktsiooni m~oiste ja esitusviisid 2. Funktsioonide liigitamine (paaris- ja paaritud funktsioonid, perioodilised funktsioo- nid, kasvavad ja kahanevad funktsioonid) 3. P¨o¨ordfunktsioon 4. Liitfunktsioon 5. Jada piirv¨aa¨rtus 6. Funktsiooni piirv¨aa¨rtus ¨ 7. Uhepoolsed piirv¨aa¨rtused 8. L~opmatult kasvavad ja l~opmatult kahanevad suurused 9. Piirv¨a¨artusteoreemid 10. L~opmatult kahanevate suuruste v~ordlemine 11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfu...

Matemaatika → Matemaatiline analüüs
810 allalaadimist
thumbnail
41
docx

Kordamisteemad ärilogistika eksamiks

Kordamisteemad ärilogistika eksamiks Kõik alljärgnevalt toodud punktid on vähemal või rohkemal määral loengutest või seminaridest läbi käinud. Loendist leiad ka viited eksami jaoks kõige tähtsamale lugemismaterjalile: Ain Kiisleri ,,Logistika ja tarneahela juhtimine". Logistika olemus Logistika eesmärgiks on..... töötab kui sild..... Logistika on osa tarneahela protsessist, mille eesmärgiks on juhtida kauba/teenuse voogusid tarnijalt lõppkliendini kõige efektiivsemal meetodil, rahuldades samaaegselt lõpptarbija vajadused parimal viisil. Töötab kui sild nõudluse ja pakkumise vahel Kolm voogu ­ materjalivoog, infovoog ja ajaline mõõde Ärilogistika eesmärk on tagada katkematu, nõudluse ja pakkumisega sünkroniseeritud voog. Mida parem on voog, seda vähem on seisakuid ning seda vähem on varude kuhjumist. Materjalid ja valmistooted jõuavad kohale õigel ajal ja järjestuses just sinna kus neid vajatakse. Hea infovoo tagajärjeks on läbipa...

Logistika → Ärilogistika
58 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

"Matemaatiline analüüs I" Funktsioon Funktsioon- Kui muutja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Sõltumatu muutuja on x, sõltuv y Funktsiooni määramispiirkond-Funktsiooni y määramispiirkonnaks nimetakse argumendi x muutumispiirkonda. Funktsioonide liigid- 1. Paaris funktsioon-rahuldab tingimust f(x)=f(-x) ja see on sümmeetriline y-telje suhtes. (Nt:y=x2) 2.Paaritu funktsioon-rahuldab tingimust f(-x)=-f(x) ja see on sümmetrialine 0 punkti suhtes. (y=sinx) 3.Perioodilised funktsioonid- rahuldab tingimust f(x+T)=f(x), T on periood. 4.Ilmutatud funktsioon- funktsioon, kus esitatava võrdsuse vasakul pool on ainult sõltuv muutuja y ja paremal muutujast x sõltuv avaldis. 5. Ilmutamata funktsioon- funktsioon, mille väärtused leitakse x ja y siduvast võrrandist. 6.Ühesed funktsioonid- nimetakse sellist fuktsooni, kus argumendi ühele väärtusele on seatud vastav...

Matemaatika → Matemaatiline analüüs
260 allalaadimist
thumbnail
12
docx

Andmeanalüüsi konspekt

ANDMEANALÜÜSI KONSPEKT Sisukord Andmefailid SPSS'is................................................................................................ 2 Normaaljaotuse kontroll.......................................................................................... 2 ANOVA vs T-test...................................................................................................... 2 ANVOA või regressioonanalüüs............................................................................... 3 Efekti suurus........................................................................................................... 3 Andmeanalüüs SPSS'is........................................................................................... 4 Kirjeldav statistika............................................................................................... 4 Kuidas testida normaaljaotust?.................................

Informaatika → Andmeanalüüs
46 allalaadimist
thumbnail
64
pdf

Kolokvium 1 materjal

TTU¨ Matemaatikainstituut http://www.staff.ttu.ee/math/ Ivar Tammeraid http://www.staff.ttu.ee/itammeraid/ ¨ US MATEMAATILINE ANALU ¨ I Elektrooniline ~oppevahend Tallinn, 2001 Tr¨ ukitud versioon: Ivar Tammeraid, Matemaatiline anal¨ uu ¨ Kirjastus, ¨s I, TTU Tallinn 2001, 227 lk, ISBN 9985-59-289-1 ¨ Raamatukogu Viitenumber http://www.lib.ttu.ee TTU ~opikute osakonnas 517/T-15 c Ivar Tammeraid, 2001 Sisukord 0.1. Eess~ ona K¨aesoleva ~ oppevahendi aluseks on autori poolt viimastel aastatel Tallinna Tehnika¨ ulikoo- lis bakalaureuse~ oppe u ¨li~ opilastele peetud u ¨he muutuja funktsiooni diferentsiaal- ja inte- graalarvutuse loengud nimetuse "Matemaatiline anal¨ uu¨s I" all. Siiski ei ole tegu pelgalt u ¨hel semestri...

Matemaatika → Matemaatiline analüüs
65 allalaadimist
thumbnail
10
doc

Üldine meteoroloogia ja klimatoloogia

Üldine meteoroloogia Soojus on energia, mis kantakse ühelt kasvuhoonegaaside sisaldust. Fossiilsete 1000 m paksuse pilve puhul neeldub ja Meteoroloogia uurib atmosfääris ja tema objektilt teisele nende vahelise temp kütuste põledes paiskub õhku peegeldub kogu kiirgus. piirpindadel (maa-õhk, vesi-õhk) erinevuse tõttu süsihappegaas CO2. Metaan CH4 eraldub Vertikaalselt langevast valgusest peegeldub toimuvaid protsesse. riisipõldudelt, metsaalustes tagasi 3%, 80´ all vertikaali suhtes Temperatuuri skaalad. lagunemisprotsessides ja loomade langenud valgusest pool tgasi. ...

Geograafia → Geoloogia
15 allalaadimist
thumbnail
102
docx

Ehitusmaterjalid ja –konstruktsioonid

Ehitusmaterjalid ja –konstruktsioonid PUIDU VEAD JA KAHJUSTUSED Välispraod on kõige levinumad ja tekivad peamiselt puidu ebaühtlase kuivamisel. Välispraod on radiaalsed. Sisepraod võivad olla radiaalsed ja ringpraod PUIDU KASVUVEAD Puidu keerdkasv. Kõverkasv. Koonuskasv. Ekstsentrilise säsi korral on aastaringi mingis suunas tunduvalt laiemad. Kaksiktüvi. Voldiline tüvi. Salmilus. Oksad rikuvad puidu struktuuri, raskendavad töötlemist ja nõrgestavad teda. Terve oks on kasvanud muu puiduga tihedalt kokku ja kahjustab puitu vähem. Surnud oks võib olla puidust kinni või lahti. Sarvoks on muust puidu osast märksa tihedam, tumedam ja kõvem. Oksad vähendavad peamiselt tõmbe- ja paindetugevust. Väga okslikku puitu ei saa kasutada tõmmatud elementidena. Painutatud elemendid tuleb paigutada nii, et okslikum pool asub survetsoonis. MÄDANIKUD Mädanemine on puidu riknemine temas arenevate seente tegevuse toimel. Seened toituvad mõnest puidu o...

Ehitus → Ehitus materjalid ja...
41 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun