Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Matemaatiline analüüs I 1. kollokvium (0)

1 Hindamata
Punktid

Lõik failist

Vasakule Paremale
Matemaatiline analüüs I 1-kollokvium #1 Matemaatiline analüüs I 1-kollokvium #2 Matemaatiline analüüs I 1-kollokvium #3 Matemaatiline analüüs I 1-kollokvium #4 Matemaatiline analüüs I 1-kollokvium #5
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 5 lehte Lehekülgede arv dokumendis
Aeg2016-05-22 Kuupäev, millal dokument üles laeti
Allalaadimisi 40 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor vanapapi Õppematerjali autor
I kollokvium täiendatud spikker.

Sarnased õppematerjalid

thumbnail
12
odt

Matemaatiline analüüs I 1. kollokvium

1. Norm ja kaugus (meetrika). Ümbrused. ε-ümbruse definitsioon. Reaalarvu ühepoolsed ümbrused. Lõpmatuse ümbrused. Kauguseks ruumis V nimetatakse reeglit, mis igale kahele selle ruumi elemendile u,v ∈V seab vastavusse skalaari d(u,v) ∈R, kusjuures on täidetud järgmised tingimused: 1 ∀u,v∈V d(u,v) ≥ 0; d(u,v) = 0⇔v = u 2 ∀u,v∈V d(u,v) = d(v,u) 3 ∀u,v,w∈V d(u,v) ≤ d(u,w) +d(w,v) Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile u ∈ V seab vastavusse skalaari ||u|| ∈ R, kusjuures on täidetud järgmised tingimused: 1)∀u ∈ V ||u|| ≥ 0; ||u|| = 0 ⇔ u = 0, 2)∀u ∈ V, α ∈ R ||αu|| = |α| ||u||, 3)∀u, v ∈ V ||u + v|| ≤ ||u|| + ||v|| Punkti ümbrusest võib mõelda kui niisugusest seda punkti sisaldavast hulgast, kus ükskõik mis suunas saab punktist õige pisut eemalduda ilma sellest hulgast väljumata. Punkti ε-ümbrus Hulka Uε(a) := {x ∈ V|d(a, x) < ε, ε > 0} nimetat

Matemaatiline analüüs 1
thumbnail
4
odt

Matemaatiline Analüüs I kollokvium spikker

1. Norm ja kaugus (meetrika). Ümbrused. ε-ümbruse definitsioon. Reaalarvu ühepoolsed Lõpmata väikeseid (suuri) suurusi α(x) ja β(x) piirprotsessis x → a nimetatakse ekvivalentseteks ümbrused. Lõpmatuse ümbrused selles piirprotsessis, kui Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile u ∈ V seab vastavusse skalaari || 8. Funktsiooni pidevus punktis. Uhepoolne pidevus. Katkevuspunktide liigid. u|| ∈ R, kusjuures on taidetud järgmised tingimused: Funktsiooni f(x) nimetatakse pidevaks punktis a, kui on taidetud kolm tingimust: 1 ∀u ∈ V ||u|| >= 0; ||u||= 0 ⇔ u = Θ 1) ∃f(a); 2) ∃ limx→a f(x); 3) limx→a f(x) = f(a). Tahistatakse f(x) ∈ C(a) 2 ∀u ∈ V, α ∈ R ||αu|| = |α|||u||

Matemaatiline analüüs
thumbnail
10
docx

ARVU ABSOLUUTVÄÄRTUSE OMADUSED

x1 , x2∈ A FUNKTSIOON (Ühene) ühe reaalmuutuja f-n – hulga X ⊂ R igale elemendile vastab element y hulgast Y ⊂ R. Mitmene f-n – hulga X igale elemendilt vastab vähemalt üks element hulgas Y ja vähemalt ühele hulga X elemendile Mittekahanev(monotoonselt kasvav): piirkonnas A⊂X , kui iga korral vastab mitu elementi hulgast Y. Määramispiirkond – hulk X. Muutumispiirkond – hulk Y. f ( X )={ y| y=f ( x ) ˄ x ∈ X } ⊆Y

Matemaatika
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

LTMS.00.022 ÜHE MUUTUJA MATEMAATILINE ANALÜÜS Loengukursus Tartu Ülikooli loodus- ja täppisteaduste valdkonna üliõpilastele 2019./2020. õppeaasta Toivo Leiger Joonised: Ksenia Niglas Pisitäiendused 2016–20: Märt Põldvere, Natalia Saealle, Indrek Zolk, Urve Kangro 2 Sisukord 1 Reaalarvud 6 1

Algebra I
thumbnail
6
pdf

Matemaatilise analüüsi I kollokviumi vastused

1*(Normi ja kauguse def. Näidata, et reaalarvu abs.väärtus rahuldab normi ja aksioome)Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile seab vastavusse skalaari , kusjuures on täidetud järgnevad tingimused: 1). 2). 1). *Kauguseks ruumis V nimetatakse reeglit, mis igale kahele selle ruumi elemendile seab vastavusse skalaari d(u,v), kusjuures on täidetud järgnevad tingimused: 1). 2). 3). *Lause: Reaalarvu absoluutväärtus rahuldab normi aksioome. Tõestus: 2*( -ümbruse definitsioon. Reaalarvu ühepoolsed ümbrused. Lõpmatuse ümbrused)Punkti - ümbrukseks nim. hulka *Reaalarvu a R korral saame U(a) = {x R|a - < x < a + }. *Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. *Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist poollõiku [a, a + ), kus > 0. *Suuruse lõpmatus ümbruseks nimetatakse suvalist vahemikku (M , ), kus M > 0. *Suuruse miinus lõpmatus ümbruseks nimetatakse suva

Matemaatika analüüs i
thumbnail
2
pdf

Kollokvium I, 2012

Teemad: 5. Öeldakse, et { xn} on Cauchy jada ehk fundamentaaljada, kui iga > 0 korral leidub C N, 1. Norm ja kaugus (meetrika). Ümbrused. -ümbruse definitsioon. Reaalarvu ühepoolsed et iga naturaalarvu n > C ja naturaalarvu p korral kehtib võrratus |xn+p - xn| < . ümbrused. Lõpmatuse ümbrused. Lause. Jada { xn} koondub parajasti siis, kui ta on Cauchy jada. 2. Funktsiooni mõiste. Reaalmuutuja ühene funktsioon. Määramispiirkond, muutumispiirkond. Jada kuhjumispunktiks nim. arvu, mille igas ümbruseson lõpmata palju vaadeldava jada Paaris ja paaritud funktsioonid. Perioodilised ja antiperioodilised funktsioonid. liikmeid. Pöördfunktsioon. Monotoonsed funktsioonid. Kasvavad ja kahanevad funktsioonid. Lause. Arv a on jada { xn} kuhjumispunkt pa

Matemaatika analüüs i
thumbnail
82
docx

Matemaatiline analüüs I kordamine eksamiks

1. Reaalarvud Reaalarvude hulga R kirjeldamisel peab oskama välja tuua järgmist: 1) Q ⊂ R – ratsionaalarvude hulk sisaldub reaalarvude hulgas 2) Aritmeetika (tehted reaalarvudega) ja järjestus Aritmeetika. Eeldame, et hulgas R on defineeritud reaalarvude liitmine ja korrutamine järgmiste omadustega: (A1) a + b = b + a kõikide a,b € R korral (liitmise kommutatiivsus) (A2) (a + b)+ c =a +(b + c) kõikide a,b,c € R korral (liitmise assotsiatiivsus) (A3) b + 0 = b iga b € R puhul (nullelemendi olemasolu) (A4) iga b € R puhul leidub -b € R korral omadusega b + (-b) = 0 (vastandelemendi olemasolu) (M1) ab = ba kõikide a,b € R korral (korrutamise kommutatiivsus) (M2) (ab) c = a (bc) kõikide a,b,c € R korral (korrutamise assotsiatiivsus) (M3) 1b = b iga b € R puhul (ühikelemendi olemasolu) (M4) iga b € R \ {0} puhul leidub b-1 € R omadusega bb-1=1 (pöördelemendi olemasolu) (D) (a + b)

Matemaatiline analüüs
thumbnail
10
pdf

Matemaatiline analüüs I 1.teooria

Esimese kollokviumi (teooriatöö) kordamisküsimused  1. Tõkestatud hulga mõiste. Ülalt/alt tõkestatud hulga mõiste. Tuua näide.  Definitsioon:​ Hulka​  X ​ nimetatakse tõkestatud hulgaks, kui ​ X ​on ülalt ja alt tõkestatud.  Definitsioon​ :Kui  leidub  niisugune  reaalarv  ​ M​,  et  hulga  ​ X  ​ iga  elemendi  ​ x  ​puhul  kehtib  võrratus  x​ ≤  M,  siis  öeldakse, et hulk ​ X ​on ülalt tõkestatud, kusjuures arvu ​ M ​ nimetatakse hulga​  X​  ülemiseks tõkkeks.  Definitsioon​ :Kui  leidub  niisugune  reaalarv  ​ m​,  et  hulga  X  ​ iga  elemendi  x  ​ puhul  kehtib  võrratus  ​ x​≥m,  siis  öeldakse, et hulk ​ X ​on alt tõkestatud, kusjuures arvu ​ m ​ nimetata

Matemaatiline analüüs




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun