1. Kollokvium 1. Hulga mõiste. Järjestatud hulk. Tehted hulkadega. Arvuhulgad. Teoreem. Ei leidu ratsionaalarvu, mille ruut on 2 (tõestada). Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Hulk koosneb elementidest, kusjuures elemendid ei kordu ja nende järjestus ei ole kindlaks määratud. Järjestatud hulk koosneb samuti elementidest, kuid selles hulgas on iga kahe elemendi kohta võimalik öelda, kumb neist on eelnev, kumb järgnev. Tehted hulkadega: * Hulkade A ja B ühendiks ehk summaks nimetatakse hulka, mille moodustavad kõik kas hulka A, hulka B või mõlemasse kuuluvad elemendid. Hulkade A ja B ühendit tähistatakse * Hulkade A ja B ühisosaks ehk korrutiseks nimetatakse hulka, mille moodustavad kõik üheaegselt nii hulka A kui ka hulka B kuuluvad elemendid. Hulkade A ja B ühisosa tähistatakse * Hulkade A ja B vaheks nimetatakse kõigi selliste elementide hulka, mis kuuluvad hulka A, kuid ei kuulu hulka B. Hulkade
MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a 0 -a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-, a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse (a - , a] siis ja ainult siis, kui selle
Parameetrilisel kujul antud funktsioon Funktsiooni piirväärtuse definitsiooni laienemine juhtudele a = ± ja b = 1.Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda 4.Üksühese funktsiooni ja pöördfunktsiooni definitsioonid. Vaatleme funktsiooni y=f(x). Toome lisaks muutujale x ± absoluutväärtuse Seosed funktsiooni ja tema pöördfunktsiooni ja y sisse ka kolmanda muutuja t. x= (t). Siis saab ka Funktsioonil f on piirväärtus kohal a, kui suvalises piirprotsessis xa, mis omadused. Reaalarvude ja lõpmatuste ümbrused. määramispiirkondade ja väärtuste hulkade vahel, vastastikune muutuja y avaldada parameetri t kaudu. y = (t). rahuldab tingimust xa
Matemaatiline analüüs 1. Arvtelg sirge, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Öeldu põhjal saab reaalarvud samastada sirge (arvelje) punktidega. Absoluutväärtuse mõiste reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset arvu. Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunktivahelist kaugust arvteljel. Absoluutväärtuste omadused: Reaalarvude ja lõpmatuste ümbrused Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a ; a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-; a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x-a| < . Reaalarvu vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a-], kus >0. Arv x kuulub arvu a vasakpoolsesse
MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a ≥ 0 −a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | − a| = |a| 2. |ab| = |a| |b| 3. |a + b| ≤ |a| + |b| 4. |a − b| ≥ | |a| − |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a − ε, a + ε), kus ε > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a−ε, a+ε) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui ε, st |x − a| < ε. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a − ε, a], kus ε > 0. Arv x kuulub arvu a vasakpoolsesse ümbrus
Matemaatiline analüüs I kontrolltöö Punktid 1-22 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. a. Arvtelje mõiste Arvteljeks nim sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Igale arvtelje punktile vastab ainult üks reaalarv ja vastupidi. b. Reaalarvu absoluutväärtus Reaalarvu absoluutväärtuseks nimetatakse järgmist mittenegatiivset arvu |a|= a, kui a 0, -a, kui a<0 c. Loetleda absoluutväärtuse omadused |-a|=|a|; |ab|=|a|*|b|; |a+b||a|+|b|;|a-b||a|-|b| d. Reaalarvude ja lõpmatuste ümbrused d.i. Reaalarvu a ümbruseks nim suvalist vahemikku (a-,a+), kus on
Täisprogramm Selle programmi järgi saab ette valmistada teooria kontrolltööde B (so raskemateks) variantideks. Esimese kontrolltöö materjal hõlmab lõike 1 22 ja teise kontrolltöö materjal hõlmab lõike 23 - 45. Igas kontrolltöös on 5 küsimust. Üks küsimus viiest on valitud jämedas kirjas (bold face) olevate teemade hulgast. Vähemalt kaks küsimust viiest sisaldavad tõestusi, tuletuskäike või põhjendusi. Programm järgib otseselt õppejõu konspekti. Kontrolltöödes ei küsita konspektis esitatud näiteid ja väikeses kirjas olevaid osi. 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. V: Arvtelje mõiste: arvteljeks nim. sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Reaalarvu absoluutväärtus: reaalarvu a absoluutväärtuseks nim. järgmist mittenegatiivset reaalarvu. Reaalarvu a absoluutväärtust a võib tõlgendada
1. · Arvtelje mõiste Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | · Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. o Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. o Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist pooll?
Kõik kommentaarid