Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

"sin-teoreem" - 189 õppematerjali

thumbnail
1
docx

Trigonomeetria valemid

Matemaatika → Matemaatika
84 allalaadimist
thumbnail
1
docx

Siinusteoreem

Siinusteoreem c b a Siinusteoreemi saab kasutada siis, kui on antud 1 külg ja tema vastasnurk ning veel mingi külg või veel mingi nurk. Näide Leia jooniselt b väärtus, kui a=6 ; =41° ; =56° c b 56° 41° 6 =180° - ( + ) =180° - (56°+41°) = 180° - 97° = 83° Siinusteoreem

Matemaatika → Matemaatika
80 allalaadimist
thumbnail
2
docx

Trigonomeetria

30 45 60 sin cos tan 1 cot 1 Täisnurkse kolmnurga lihtustamine: Valemid: sin2 x + cos2 x = 1 Üle 90 nurgad · Esimene veerand kuni 90nurgad · Teine veerand kuni 180nurgad. Otsitava nurga leidad 180- Ntks: cos120=cos(180-60)=cos 60=0.5 · Kolmas veerand kuni 270. Otsitava nurga leiad 180+ · Neljad veerand kuni 360. Otsitava nurga leiad 360- Tabel, mis näitab sin,cos ja tan märgi, kui nurk on üle 90: I veerand II veerand III veerand IV veerand sin + + - - tan + - + - cos + - - + Erinevad võimalused täisnur...

Matemaatika → Matemaatika
44 allalaadimist
thumbnail
31
pdf

Piirväärtus loeng 3

Piirväärtus Punkti ümbrus Punkti a ümbruseks nimetatakse suvalist vahemikku, millesse see punkt kuulub. Punkti a ümbruseks raadiusega > 0, nimetatakse arvtelje vahemikku arvust a - kuni a + . a- a a+ x Ehk arv x kuulub arvu a ümbrusesse raadiusega , kui a-

Matemaatika → Matemaatika
30 allalaadimist
thumbnail
6
docx

Matemaatika riigieksamiks kordamine

FUNKTSIOONID Paarisfunktsioon: Paaritu funktsioon: Funktsioonide üldkujud: y = ax 1) X= Y= 2) X = Y = 1) 0 < a < 1 2) a > 1 y = logax 1) X= Y= 2) X = Y = 1) 0 < a < 1 2) a > 1 y = xa 1) X= Y= 2) X = Y = 1) a on paarisarv 2) a on paaritu arv y = 1 / xa 1) X= Y= 2) X = Y = 1) a on paarisarv 2) a on paaritu arv y = sin x y = cos x y = tan x Perioodide pikkused: y = sin x periood: y = cos x periood: y = tan x periood: TRIGONOMEETRIA 1 + tan2 = 1 + cot2 = sin (+) = sin (-) = cos (+) = cos(-) = tan (+) = tan (-) = sin 2 = cos 2 = tan 2 = sin /2 = cos /2 = tan /2 = Võrrandid: sin x = m x= cos x = m x= tan x = m x= Eukleidese teoreem: Teoreem kõrgusest: Siinusteoreem: 2R = Koosinusteoreem: NB! p ­ pool ümbermõõtu, r ­ siseringjoon...

Matemaatika → Matemaatika
168 allalaadimist
thumbnail
4
pdf

Matemaatiline analüüs II, II teooriaküsimused 2013

Kordamisküsimused matemaatilise analüüsi (II) II osaeksamiks 2013 1. Kahekordne integraal (integraalsumma, kahekordse integraali definitsioon, kahekordse integraali omadused (vastavad teoreemid tõestuseta)). n Moodustame summa: Vn = f ( P1 )s1 + f ( P2 )s 2 + ... + f ( Pn )s n = f ( Pi )s i i =1 Seda summat nimetatakse funktsiooni f(x,y) integraalsummaks üle piirkonna D. Teoreem 1. Kui funktsioon f(x,y) on kinnises piirkonnas D pidev, siis integraalsummade jadal leidub osapiirkondade si maksimaalse läbimõõdu nullile lähenemisel ja n lõpmatul kasvamisel piirväärtus, mis on üks ja sama iga jada puhul, s.t. ta ei sõltu piirkonna D osapiirkondadeks si jaotamise viisist ega punkti Pi valikust piirkoonas si. Seda piirväärtust nimetatakse funktsioonif (x,y)...

Matemaatika → Matemaatiline analüüs ii
161 allalaadimist
thumbnail
2
doc

Planimeetria valemid

PLANIMEETRIA Kolmnurk Kolmnurga sisenurkade summa on 180o , + + = 180o . Kolmnurga kõrgused lõikuvad ühes punktis. Kolmnurga nurgapoolitajad lõikuvad kõik ühes punktis, mis on kolmnurga siseringjoone keskpunktiks (raadius r on keskpunkti kaugus küljest). Kolmnurga mediaanid (küljepoolitajad) lõikuvad kõik ühes punktis, mis jaotab iga mediaani suhtes 2:1 vastavast tipust arvates. Kolmnurga külgede keskristsirged lõikuvad kõik ühes punktis, mis on kolmnurga ümberringjoone keskpunktiks (raadius R on keskpunkti kaugus kolmnurga tipust). Siinusteoreem: kolmnurga küljed on võrdelised vastasnurkade siinustega ehk a b c = = = 2R . sin sin sin Koosinusteoreem: kolmnurga ühe külje ruut on võrdne ülejäänud külgede ruutude summaga, millest on lahutatud ...

Matemaatika → Matemaatika
357 allalaadimist
thumbnail
2
doc

trigonomeetria, valemid

Matemaatika Trigonomeetria: täisnurkse kolmnurga lahendamine. a,b= kaatetid c= hüpotenuus +=90° =90°- või =90°- c2=a2+b2 c=a2+b2 a=c2-b2 b=c2-a2 Kolmnurga pindala: S=a*b/2 Teravnurga siinus on vastaskaateti ja Trigonomeetrilised funktsioonid: hüpotenuusi suhe(jagatis) sin=a/c sin=b/c Teravnurga kosinus on lähiskaateti ja cos=b/c cos=a/c hüpotenuusi suhe(jagatis) tan=a/c tan=b/a Teravnurga tangens on vastaskaateti ja lähiskaateti suhe(jagatis) Nurki mõõdame kraadides: 1° 1°= 60'( minutit) 1'(min)= 60"(sekund) Mittetäisnurkse kolmnurg...

Matemaatika → Matemaatika
534 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

Funktsioon. Määramispiirkond, väärtuste hulk. Pöördfunktsioon. Seaduspärasust või teisendust, mis igale X elemendile x seab vastavuse ühe hulga Y elemendi y nim. argumendi x funktsiooniks ja kirjutatakse y=f(x) Funktsiooni y=f(x) määramispiirkonnaks on kõigi nende argumendi x väärtuste hulk, mille korral funktsioon omab mõtet ja on lõpliku väärtusega. Funktsiooni väärtuste hulgaks nim. nende väärtuste hulka, mida funktsioon omandab, kui läbib kogu määramispiirkonna. Tingimused, mis peavad olema täidetud elementaarfunktsioonide kaudu esitatud reaalmuutuja funktsioonil: B ( x) 1) A( x) 0 A( x) 2) 2 x A( x) A( x) 0 3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendat...

Matemaatika → Matemaatiline analüüs
179 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

Funktsioon. Määramispiirkond, väärtuste hulk. Pöördfunktsioon. Seaduspärasust või teisendust, mis igale X elemendile x seab vastavuse ühe hulga Y elemendi y nim. argumendi x funktsiooniks ja kirjutatakse y=f(x) Funktsiooni y=f(x) määramispiirkonnaks on kõigi nende argumendi x väärtuste hulk, mille korral funktsioon omab mõtet ja on lõpliku väärtusega. Funktsiooni väärtuste hulgaks nim. nende väärtuste hulka, mida funktsioon omandab, kui läbib kogu määramispiirkonna. Tingimused, mis peavad olema täidetud elementaarfunktsioonide kaudu esitatud reaalmuutuja funktsioonil: B ( x) 1) A( x) 0 A( x) 2) 2 x A( x) A( x) 0 3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendat...

Muu → Matemaatiline analüüs
11 allalaadimist
thumbnail
6
doc

Planimeetria

PLANIMEETRIAKURSUSE KORDAMINE GÜMNAASIUMI LÕPUEKSAMIKS. KOLMNURGAD 1. Kolmnurga sisenurkade summa on sirgnurk + + = 180 o 2. Siinusteoreem a b c = = = 2R sin sin sin 2. Koosinusteoreem a 2 = b 2 + c 2 - 2bc cos b 2 = a 2 + c 2 - 2ac cos c 2 = a 2 + b 2 - 2ab cos 4. Pindala valemid. ch ab sin a +b +c S= ; S= ; S = p ( p - a )( p -b)( p -c ) ; p= ; 2 2 2 abc S = pr ; S= 4R 5. Kolmnurga kõrgus (h on ristlõik külje ja selle vastastipu vahel) , mediaan (m on lõik külje keskpunkti ja selle vastastipu vahel. Mediaanid lõikuvad ühes...

Matemaatika → Matemaatika
214 allalaadimist
thumbnail
12
doc

PLANIMEETRIAKURSUSE KORDAMINE GÜMNAASIUMI LÕPUEKSAMIKS.

PLANIMEETRIAKURSUSE KORDAMINE GÜMNAASIUMI LÕPUEKSAMIKS. KOLMNURGAD 1. Kolmnurga sisenurkade summa on sirgnurk       180 o 2. Siinusteoreem a b c    2R sin  sin  sin  2. Koosinusteoreem a 2  b 2  c 2  2bc cos  b 2  a 2  c 2  2ac cos  c 2  a 2  b 2  2ab cos  4. Pindala valemid. ch ab sin  abc S ; S ; S  p ( p  a )( p  b)( p  c) ; p ; 2 2 2 abc S  pr ; S 4R 5. Kolmnurga kõrgus (h on ristlõik külje ja selle vastastipu vahel) , mediaan (m on lõik külje keskpunkti ja selle vastastipu vahel. Mediaan...

Matemaatika → Matemaatika
34 allalaadimist
thumbnail
18
docx

Elementaarmatemaatika 1. teooria

Elementaarmatemaatika 1. Teooria Mõistete definitsioonid; selgitavad joonised, tekstid 1. Arvuhulga järjestatus- Arvuhulka nimetatakse järjestatuks, kui iga tema kahe arvu a ja b korral kehtib üks kolmest võimalusest, kas a > b , a = b või a

Matemaatika → Elementaarmatemaatika 1
63 allalaadimist
thumbnail
21
pdf

Funktsiooni tuletis (jätk) loeng 6

Funktsiooni tuletis (jätk) - + sin - sin = 2 sin cos 2 2 Funktsiooni y = sin x tuletis Teoreem: Funktsiooni y = sin x tuletis on cos x. x + x - x x + x + x Tõestus: y = sin( x + x) - sin x = 2 sin cos 2 2 x x = 2 sin cos x + 2 2 x x x 2 sin cos x + sin y 2 2 2 cos x + x = = x x x 2 2 1 ...

Matemaatika → Matemaatika
70 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs II

Mitmemõõtmelise ruumi mõiste Def: On antud n reaalarvu x1...xn ja nende järjestatud jada (x1...xn)(-punkt) ­ seda nim n- mõõtmelise ruumi punktiks. Rn={(x1,...,xn) | xi R, i=1,...,n}, P(x1,...,xn) ­ punkt koordinaatidega xi n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. ...

Matemaatika → Matemaatiline analüüs 2
336 allalaadimist
thumbnail
1
rtf

Sin Cos Tan

Phytagorase teoreem. a2+b2=c2 Siinus. sin =a/c sin =b/c Teravnurga siinus on selle nurga vastaskaateti ja hüpotenuusi suhe. 0

Matemaatika → Matemaatika
167 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

MATEMAATILINE ANALÜÜS I § 1 REAALARVUD JA FUNKTSIOONID 1. Reaalarvu mõiste Tähistame sümboliga N kõigi naturaalarvude hulga, st N = {1, 2, 3,...} ja sümboliga Z kõigi täisarvude hulga, st Z = {...,­3,­2,­1, 0, 1, 2, 3,...}. p Ratsionaalarvudeks nimetatakse arve kujul q , kus p ja q on täisarvud, q 0. Kõigi ratsionaalarvude hulga tähistame sümboliga Q. Ratsionaalarvudeks on parajasti need arvud, mis on esitatavad lõplike või lõpmatute perioodiliste kümnendmurdudena. Arve, mis on esitatavad lõpmatute mitteperioodiliste kümnendmurdudena, nimetatakse irratsionaalarvudeks. Kõik ratsionaalarvud ja irratsionaalarvud moodustavad reaalarvude hulga. Kõigi reaalarvude hulga tähistame sümboliga R. Iga lõplikku kümnendmurdu a= , 12 ...n saab esitada lõpmatu kümnendmurruna kahel viisil: a = , 12 ...n 00... või a =...

Matemaatika → Matemaatiline analüüs i
687 allalaadimist
thumbnail
1
doc

Valemid

Põhiseosed : Kui sinx=m, siis x=(-1)n arcsinm + n, sin 2 + cos 2 = 1 kus n Z sin tan = cos Kui cosx=m, siis x=±arccosm + 2n, tan · cot = 1 kus n Z 1 1 + tan 2 = Kui tanx=m, siis x=arctanm + n, kus n cos 2 Liitmisvalemid : Z sin( ± ) = sin cos ± cos sin Viete'I teoreem ax2+bx+c=0 cos( ± ) = cos cos sin sin x1+x2=-b, x1*x2=c tan ± tan sin( ± ) tan( ± ) = = ...

Matemaatika → Matemaatika
22 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

Sisujuht 16. Esimest liiki katkevuspunkt - niisugust katkevuspunkti, kus funktsioonil f on olemas ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärt...

Matemaatika → Matemaatika
118 allalaadimist
thumbnail
2
pdf

Matemaatika valemid

Hulkliikmete korrutamine Tehted Arvu ruutjuur Funktsioonide graafikud Ring (a+b)2 =a2+2ab+b2 astmetega a, kui a > 0 Võrdeline seos : y=ax d (a-b)2=a2-2ab+b2 (a : b)n=an : bn a>0 d = 2r r= a = a = - a, kui a p 0 2 2 (a-b)(a+b)=a2-b2 (ab)n=an bn 0, kui a = 0 (a...

Matemaatika → Algebra I
142 allalaadimist
thumbnail
1
doc

Valemid

Ruutvõrrandi lahend: Vete'i teoreem: ax² + bx + c = 0 x2+px+q=0 x = -b±b²-4ac 2a x1+x2=-p x1*x2=q Pythagorase teoreem: Protsendid: %arvust x*%/100 a2+b2=c2 a=c2-b2 moodustaja x=25/10%*100=250 c=a2+b2 b=c2-a2 arv-arvust x-y-st x/y*100=% Korrutamise valemid (a+b)² = a² +2ab +b² (a-b)² = a² -2ab +b² (a+b)(a-b) = a² -b² (a+b)³ = a³ +3a²b +3ab² +b² (a-b)³ = a³ -3a²b +3ab² -b² (a-b)(a² +ab +b²) =a³ -b³ (a+b)(a² -ab +b²) =a³ +b³ Pythagorase joonis: c a b sin=a/c sin=b/c cos=b/c cos=a/c tan=a/b tan=b/a Rööptahukas: Sp=ab, Sk=2(a+b)h, V=Sp*h Koonus: Sp=r , Sk=rm, V=Sph/3=r2h/3 2 Püramiid: V=1/3Sph Ring: C=2r S=r2 Silinder: c=2r, Sk=2rh, St=Sk+2Sp, Sp=r2, V=r 2h=Sp*h Kera: S=4r2, V=4/3r3 Kuup: S=6*a2, V=a3 Kolmnurk: S = a x h : 2, P=a+b+c Trapets: S = (a + a2) : 2 x h, P = a + a2 + c + d Rööpkülik: S=a*h, P=2(a+b) Romb: S=a*h, P=2(a+b) Risttahukas: S=2(ab+ac...

Matemaatika → Matemaatika
174 allalaadimist
thumbnail
6
doc

Planimeetria kordamine

PLANIMEETRIA KORDAMINE NELINURGAD RÖÖPKÜLIK Vastasküljed on paralleelsed ja võrdsed Vastasnurgad on võrdsed Diagonaalid poolitavad teineteist Diagonaal jaotab rööpküliku kaheks pindvõrdseks kolmnurgaks Lähisnurkade summa on 180º ( Diagonaalide ruutude summa on võrdne külgede ruutude summaga: d 12 + d 22 = 2 a 2 + b 2 ) Ümbermõõt. P = 2( a + b ) Pindala: S = ah S = a b sin ROMB On võrdsete külgedega rööpkülik, seega on rombil kõik rööpküliku omadused. Lisaks on rombi diagonaalid risti ja poolitavad rombi nurgad, Rombi kõrgused on pikkuselt võrdsed. 1 Rombi diagonaalide lõikepunkt on siseringjoone keskpunkt r = h 2 d 12 + d 22 = 4a 2 Ümbermõõt: P = 4a Pindala: S ...

Matemaatika → Matemaatika
283 allalaadimist
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m vaheline kaugus d (P, Q ) valemiga d (P, Q ) = (x - y i ) , siis nimetatakse seda ruumi 2 i i =1 m-mõõtmeliseks eukleidiliseks ruumiks ja tähistatakse R m . Süsteemi P = ( x1 ,..., x m ) nimetatakse ruumi R m punktiks ning reaalarve xi (1...

Matemaatika → Matemaatiline analüüs ii
187 allalaadimist
thumbnail
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a I FUNKTSIOONID Tõkestatud hulgad Ülalt ja alt tõkestatud hulgad Olgu X mingi reaalarvude hulk. Definitsioon: Kui leidub niisugune reaalarv M , et hulga X iga elemendi x puhul kehtib võrratus x M , siis öeldakse, et hulk X on ülalt tõkestatud, kusjuures arvu M nimetatakse hulga X ülemiseks tõkkeks. Ülalt tõkestatud hulga X elemendid paiknevad seega lõpmatus poollõigus (- , M ] . Definitsioon: Kui leidub niisugune reaalarv m , et hulga X iga elemendi x puhul kehtib võrratus x m , siis öeldakse, et hulk X on alt tõkestatud, kusjuures arvu m nimetatakse hulga X alumiseks tõkkeks. Alt tõkestatud hulga X elemendid paiknevad seega lõpmatus poolllõigus [m, ) . Definitsioon: Hulka X nimetatakse tõkestatud hulgaks, kui X on ülalt ja alt tõkestatud. Tõkestatud hulga X elemend...

Matemaatika → Matemaatiline analüüs i
73 allalaadimist
thumbnail
2
doc

Matemaatika valemid

Ring ­ S=r2 ; P=2r Rööpkülik ­ S=ah ; P=2(a+b) Ruut ­ S=a ; P=4a 2 Romb ­ S=d1*d2/2 = a*h Ristkülik ­ S=a*b ; P=2(a+b) Trapets ­ S=a+b/2*h = k*h ; P=a+b+c+d Kolmnurk ­ S=a*h:2 ; P=a+b+c Täisnurkne kolmnurk ­ S=1/2*ah ; Risttahukas ­ S=2(ab+ac+bc) ; V=abc Viete teoreem: X1+X2 = -p Püstprisma ­ Sk=P*h ; St=Sk+2Sp; V=Sp*h X1*X2 = q Kuup ­ Sp=a ; Sk=4*a 2 2 Silinder ­ Sp=r2 ; St=2r ; Sk=2rh ; V=r2h Kera ­ S=4r2 ; V= 4/3 r3 Koonus ­ Sp=r2 ; Sk=rm ; St=r ; V= 1/3 r2h Korrapärane püramiid ­ Sk=P*h ; St=Sk+2Sp ; V=Sp*h Püramiid ­ Sk=Pm/2 ; St =Sk+Sp ; V=1/3Sp*h · (a+b)(a-b)= a²- b² · (a-b)³=a³-3a²b+3ab²-b³ · (a+b)²= a²+2ab+b² · (a+b)(a²-ab+b²)= a³+b³ · (a-b)²= a²-2ab+b² · (a-b)(a²+ab+b²)= a³-b³ · (a+b)³= a³+3a²b+3ab²+b³ Sin = a/c a = c*sin c = a/sin Sin = b/c Cos = b/c b = c*cos ax2 + bx + c = 0 -b +- b2 ...

Matemaatika → Matemaatika
205 allalaadimist
thumbnail
4
pdf

MATEMAATIKA GÜMNAASIUMI (GEOMEETRIA, PLANIMEETRIA, STEREOMEETRAIA) JA PÕHIKOOLI EKSAMIKS KÕIK VAJALIKUD VALEMID

Hulkliikmete korrutamine Tehted Arvu ruutjuur Funktsioonide graafikud Ring (a+b)2 =a2+2ab+b2 astmetega ⎧a, kui a > 0 Võrdeline seos : y=ax d (a-b)2=a2-2ab+b2 (a : b)n=an : bn ⎪ a>0 d = 2r r= a = a = ⎨ - a, kui a p 0 2 2 (a-b)(a+b)=a2-b2 (ab)n=an bn ...

Matemaatika → Matemaatika
871 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksi...

Matemaatika → Kõrgem matemaatika
94 allalaadimist
thumbnail
6
pptx

Siinuse Teoreem ja Kolmnurga pindala

Siinuse Teoreem ja Kolmnurga pindala kahe külje ja nendevahelise nurga järgi . R- kolmnurga ümberringjoone raadius Piirdenurk- on kõõlude vaheline nurk, mille tipp on ringjoon. Piirdenurk võrdub poolega samale haarale toetuvast kesknurgast. Kesknurk- on raadiuste vaheline nurk, sest toetub : Sin(a)=a/2R : kaks külge ja ühe külje vastasnurk! a/sin(a)=2R : kaks nurka ja ühe nurga vastas külg! Kolmnurga küljed on võrdelised vastasnurkade siinustega. Siinusteoreemi abil saame lahendada kolmnurki kui on antud: 1. Kaks nurka ja üks külg. 2. Kaks külge ja on antud ühe külje vastasnurk. Kolmnurk Kolmnurga pindala võrdub kahe külje ja nendevahelise nurga siinuse poole korrutisega: ,-kui on acsin(),-bcsin() Kolmnurga pindalad: S=1/2 ¤ A ¤ H

Matemaatika → Matemaatika
48 allalaadimist
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2. Funktsiooni z x2 y 2 graafikuks on pöördparaboloid (vaata allpool olevat joonist) Kahe muutuja funktsiooni f nivoojoonteks nimetatakse jooni f x, y c Näide 3. Tüü...

Matemaatika → Matemaatiline analüüs ii
69 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs kontrolltöö

MITME MUUTUJ A FUNKTSIOON. PIIRV ÄÄRTUS. DIFERENTSEERIMINE Mitme muutuja funktsioon Mitme muutuja funktsiooni üldkuju: w = f ( x, y , z ,...) ( x, y, z ,...) D Kahe puntki vaheline kaugus: Puntkide P1 = ( x1 , y1 , z1 ,...) ja P2 = ( x2 , y 2 , z 2 ,...) vaheliseks kauguseks nimetatakse reaalarvu d ( P1 , P2 ) = ( x1 - x2 ) 2 + ( y1 - y2 ) 2 + ( z1 - z 2 ) 2 + ... . Punkti -ümbrus: Olgu mingi arv. Punkti P0 = ( x0 , y0 , z 0 ,...) -ümbruseks U ( P0 ) nim. kõigi selliste punktide P = ( x, y , z ,...) hulka, mille kaugused punktist P0 on väiksemad kui , s.t d ( P, P0 ) = ( x - x0 ) 2 + ( y - y0 ) 2 + ( z - z0 ) 2 + ... < . Hulga sisepunkt: Punkti P0 D nim. hulga D sisepunktiks kui leidub punkti P0 selline -ümbrus, mis kuulub hulka D, s.t U ( P0 ) D . Hulga rajapunkt: Punkti P0 ni...

Matemaatika → Matemaatiline analüüs
119 allalaadimist
thumbnail
11
docx

Mehaanika eksam

Kui jõusüsteemiga on ekvivalentne üksainus jõud, siis seda jõudu nimetatakse süsteemi resultandiks. 1. Tasakaaluaksioom. Kaks absoluutselt jäigale kehale rakendatud jõudu on tasakaalus siis ja ainult siis, kui nad on samal sirgel ja võrdvastupidised 2. Superpositsiooniaksioom. Tasakaalus olevate jõusüsteemide lisamine või eemaldamine ei mõjuta jäiga keha tasakaalu või liikumist. Järeldus: jäiga keha tasakaal ei muutu, kui kanda jõu rakenduspunkt piki mõjusirget üle keha mistahes teise punkti. 3. Jõurööpküliku aksioom. . Kui keha mingis punktis on rakendatud kaks jõudu, siis neid saab keha seisundit muutmata asendada resultandiga, mis võrdub nende geomeetrilise summaga. Aksioom kehtib ka deformeeruva keha juhul. 4. Mõju ja vastumõju aksioom (Newtoni III seadus ). Kaks keha mõjutavad teineteist võrdvastupidiste jõududega, millel on ühine mõjusirge. 5. Jäigastamise aksioom. . Deformeeruva keha tasakaal ei mu...

Füüsika → Füüsika ii
76 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

YMM3731 Matemaatiline analu¨u¨s I 2007/08 ~o.-a. su¨gissemestril 3,5 AP 4 2-0-2 E S Dots. Lembit Pallas TTU¨ Matemaatikainstituut V-404, tel. 6203056 e-post: [email protected] K¨asitletavad teemad on toodud punktide kaupa. Neid punkte tuleb vaadelda ka kui kollokviumide ja eksami teooriak¨ usimusi. 1. Funktsiooni m~oiste ja esitusviisid 2. Funktsioonide liigitamine (paaris- ja paaritud funktsioonid, perioodilised funktsioo- nid, kasvavad ja kahanevad funktsioonid) 3. P¨o¨ordfunktsioon 4. Liitfunktsioon 5. Jada piirv¨aa¨rtus 6. Funktsiooni piirv¨aa¨rtus ¨ 7. Uhepoolsed piirv¨aa¨rtused 8. L~opmatult kasvavad ja l~opmatult kahanevad suurused 9. Piirv¨a¨artusteoreemid 10. L~opmatult kahanevate suuruste v~ordlemine 11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfu...

Matemaatika → Matemaatiline analüüs
808 allalaadimist
thumbnail
20
pdf

Geomeetria/Planimeetria.

KORDAMINE RIIGIEKSAMIKS VI teema Geomeetria PLANIMEETRIA Tasandilised kujundid ja nendega seotud valemid. Ristkülik d b S  ab P  2a  b  d  a2  b2 a a Ruut d S  a2 a P  4a d a 2 Rööpkülik d1  S  ah  ab sin  h b P  2a  b  d2      180 0 d1  d 2  2a 2  b 2  a ...

Matemaatika → Geomeetria
78 allalaadimist
thumbnail
2
doc

Pythagorase teoreem

Valem sõnades: täisnurkses kolmnurgas hüpotenuusi (c) ruut võrdub kaatetite (a ja b) ruutude summaga. koosinusteoreem Kolmnurga ühe külje ruut on võrdne ülejäänud külgede ruutude summaga, millest on lahutatud samade külgede ja nendevahelise nurga koosinuse kahekordne korrutis Pythagorase teoreem on koosinusteoreemi erijuht täisnurksete kolmnurkade jaoks. Siinusteoreem on seos kolmnurga külgede ja nurkade vahel. Selle järgi on kolmnurga suurima külje vastas ka suurim nurk. Täpsemalt öeldes on kolmnurga kõigi külgede suhe vastasnurga siinusesse konstantne ning selle kaudu saab leida kolmnurga ümberringjoone raadiuse R. Siinusteoreemi kasutatakse kolmnurga arvutamiseks, kui on teada üks külg, selle vastasnurk ja veel kas üks külg või üks nurk. Juhul, kui on teada kaks külge ja ühe külje vastasnurk, tuleb eelnevalt veenduda ka selles, kas otsitav nurk on teravnurk või nürinurk (näite...

Matemaatika → Matemaatika
37 allalaadimist
thumbnail
6
docx

Matemaatilise analüüsi eksamiks valmistumine

Kordamisküsimused 1. Funktsioon - Olgu X mingi reaalarvude hulk. Kui muutuja x igale väärtusele hulgas X vastab muutuja y üks kindel väärtus, siis öeldakse, et y on muutuja x funktsioon. Funktsiooni esitusviis: tabelina, graafikuna. Funktsiooni analüütiline esitusviis on ilmutatud, ilmutamata, parameerilisel kujul. 2. Funktsioonide liigitus (paaris- ja paaritud funktsioonid, perioodilised funktsioonid, monotoonsed funktsioonid, tõkestatud funktsioonid). Tuua näiteid. paarisfunktsioon - Funktsiooni y = f (x) nimetatakse paarisfunktsiooniks, kui f (-x) = f (x) Paarisfunktsiooni graafik on sümmeetriline y-telje suhtes paaritu funktsioon - Funktsiooni y = f (x) nimetatakse paarituks funktsiooniks, kui f (-x) = -f (x). paaritu funktsiooni graafik on 0 punkti suhtes sümmeetriline perioodiline funktsioon - Funktsiooni f (x) nimetatakse perioodiliseks, kui l...

Matemaatika → Matemaatiline analüüs
136 allalaadimist
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a 0 -a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-, a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse (a - , a] siis...

Matemaatika → Matemaatiline analüüs i
105 allalaadimist
thumbnail
35
pdf

Mitmemuutuja funktsioonid

MITME MUUTUJA FUNKTSIOON 1. Punkti ümbrus. Kinnine ja lahtine piirkond. Mitme muutuja funktsioon ja selle määramispiirkond. Def. 1.1. ( 0 0 )0 Punkti P x1 , x 2 ,..., x n ümbruseks n-mõõtmelises ruumis R n nimetatakse punktide hulka { U ( P ) , mis rahuldavad tingimust U ( P ) = Q( x1 , x 2 ,..., x3 ) R n ( P, Q ) < , kus } ( P, Q ) = PQ = (x1 - x10 ) + (x 2 2 - x 20 ) 2 ( + ... + x n - x n0 ) 2 Def. 1.2. Piirkonnaks D kahemõõtmelises ruumis nimetatakse selle ruumi osa, mis on piiratud mingi joonega L, mida nimetatakse rajajooneks. Kolme- või enamamõõtmelise ruumi piirkonnaks D ...

Matemaatika → Matemaatiline analüüs 2
240 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks...

Matemaatika → Matemaatiline analüüs
484 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonom...

Matemaatika → Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H...

Matemaatika → Matemaatika
42 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

Kõrgema matemaatika kordamisküsimused 1. Maatriksi definitsioon. Maatriksi elemendid. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Transponeeritud maatriks 2. Maatriksite korrutise definitsioon. Korrutamise omadused ja seosed lineaarsete tehete ning korrutamise vahel. Ühikmaatriks. 3. Teist ja kolmandat järku determinandid. 4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste. Pöördmaatriksi definitsioon ja elementide leidmise eeskiri. Pöördmaatriksi omadused. 7. Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Vasturääkiv, kooskõlaline, määratu süsteem. Süsteemi maatriks ja laiendatud ma...

Matemaatika → Algebra I
198 allalaadimist
thumbnail
25
doc

MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega

MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a ≥ 0 −a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | − a| = |a| 2. |ab| = |a| |b| 3. |a + b| ≤ |a| + |b| 4. |a − b| ≥ | |a| − |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a − ε, a + ε), kus ε > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a−ε, a+ε) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui ε, st |x − a| < ε. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a − ε, a], kus ε > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse...

Matemaatika → Matemaatiline analüüs 1
43 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

1. Funktsioon: Funktsiooni mõiste. Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Funktsioone tähistatakse tavaliselt tähtedega f; g; u; v; ; jne. Olgu antud funktsioon f mille argumendiks on x ja s~oltuvaks muutujaks y. Muutuja y väärtust milleks funktsioon f kujutab argumendi x nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega, me võime kirjutada seose y = f(x) ; (1.1) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Mõnikord kasutatakse funktsiooni ja sõltuva muutuja tähistamiseks ühte ja sama sümbolit. Sellisel juhul seos (1.1) omab kuju y = y(x). ...

Matemaatika → Matemaatiline analüüs
598 allalaadimist
thumbnail
5
docx

Teine osaeksam, matemaatiline analüüs I, teooriaküsimused

Matemaatilise analüüsi (I) II osaeksami teooriaküsimused (Tallinnas õppivatele kaugõppijatele) 1. Funktsiooni muudu peaosa ja funktsiooni diferentsiaal. Sõltumatu muutuja diferentsiaal. Funktsiooni diferentsiaali valem. Ligikaudse arvutamise valem. Funktsiooni muut y koosneb kahest liidetavast, millest esimene [kui f ( x ) 0 ] on muudu niinimetatud peaosa, mis on võrdeline argumendi muuduga x . Korrutist f ( x ) x nimetatakse funktsiooni diferentsiaaliks ja tähistatakse sümboliga dy või df ( x ) . Sõltumatu muutuja x diferentsiaal dx ühtib tema muuduga x . dy f ( x ) = Funktsiooni diferentsiaali valem: dy = f ( x ) dx ehk dx Ligikaudse arvutamise valem: f ( x + x ) f ( x ) + f ( x ) x 2. Kõrgemat järku tuletised. Funktsiooni teist järku tuletiseks ehk teiseks ...

Matemaatika → Matemaatika analüüs i
147 allalaadimist
thumbnail
1
docx

Siinus Teoreemi tõestamine

Teoreem: Kolmnurga küljed on võrdelised vastasnurkade siinustega.Kehtivad võrdused: . Eeldus: On antud ABC, küljed a,b,c ja küljed ,,. Väide: =2R Tõestus: 1)Avaldame ABC pindala kolmel erineval viisil: Sabc=absin ; Sabc=bcsin ; Sabc=acsin Pindala väärtus valitud valemist ei olene : Sabc=absin = Sabc=bcsin ?= Sabc=acsin |: Absin=bcsin=acsin | : abc = Kui arvud on võrdes on võrdsed ka nende pöördarvud: 2) Näitan, et = 2R 1. Joonestan tipust C diameetr CD=d=2R 2. Ühendan punktid B ja A 3. D=A= 4. Saan DBC=90kraadi 3)ABC: sin= ja saan 2R= (võrde välisliikmeid võib vahetada)

Matemaatika → Matemaatika
5 allalaadimist
thumbnail
104
pdf

Konspekt

I. Determinandid 1 Determinandi m~ oiste 1.1 Idee selgitus Algul defineerime esimest j¨ arku determinandi, siis esimest j¨arku determinandi abil teist j¨ arku determinandi, seej¨arel teist j¨arku determinandi abil kolmandat j¨ arku detereminandi jne, n-j¨arku determinandi defineerime (n - 1)-j¨arku determinandi kaudu. Sel- list defineerimisviisi nimetatakse induktiivseks ja vastavat objekti induktiivseks konstruktsiooniks. Eelnevalt on soovitatav tutvuda maatriksi m~oistega (II.1.1). Kooloniga v~ordus A := B t¨ahendab j¨argnevas, et A on defineeri- tud B kaudu. Seda v~ordust kasutame ka samav¨ a¨arsete t¨ ahistuste sissetoomiseks. 1.2 Esimest j¨ arku determinant Arvu a R determinandi |a| ehk esimest j¨ arku determinandi de- fineerime valemiga |a| := det a := a. ...

Matemaatika → Lineaaralgebra
511 allalaadimist
thumbnail
9
docx

Insenerimehaanika eksami küsimuste vastused

1. Teoreetilise mehaanika aine. Teoreetilise mehaanika osad (staatika, kinemaatika, dünaamika, analüütiline mehaanika). Insenerimehaanika. *Mehaanika on teadus reaalsete objektide liikumisest. * Teoreetiline mehaanika on mehaanika osa, mis uurib absoluutselt jäikade kehade paigalseisu ja liikumist nendele kehale rakendatud jõudude mõjul. Absoluutselt jäigaks kehaks nimetame keha, mille kahe mistahes punkti vaheline kaugus on jääv sõltumatult kehale toimivatest välismõjutustest (jõududest). *Seega: absoluutselt jäigas kehas ei toimu iialgi mitte mingisuguseid deformatsioone. On aga selge, et absoluutselt jäiga keha mõiste on abstraktsioon, sest kõik reaalsed kehad tegelikult ikkagi deformeeruvad välisjõudude mõjul. Igapäevases praktikas me aga näeme, et rakendatud jõudude toimel on need deformatsioonid üldiselt väga väikesed ja paljudes ülesannetes võib nad esimeses lähenduses jätta arvestamata. See asjaolu õigustabki jäiga keha kasutami...

Mehaanika → Insenerimehaanika
123 allalaadimist
thumbnail
11
doc

Matmaatiline analüüs I 1. teooriatöö konspekt

Matemaatiline analüüs I I KT 1. Arvteljeks nimetatakse sirget, millel on maaratud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid parameetreid saab punktidele teljel märkida kõik reaalarvud. Igale reaalarvule vastab arvteljel ainult üks koht ja vastupidi. Absoluutväärtus on punkti kaugus koordinaatide alguspunktist. |a| =a kui a 0 -a kui a < 0 . Absoluutväärtuste omadused 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused Reaalarvu a ümbruseks nimetatakse suvalist lõiku (a-;a+), kus >0 on ümbruse raadius. Arv x kuulub a ümbrusesse siis ja ainult siis, kui punkti x kaugus a- st on väiksem ümbruse raadiusest | x-a| < Suuruse lõpmatus ümbrust nimetatakse suvalist vahemikku (M; ), kus M>0. Arv x kuulub lõpmatuse ümbrusesse kui x>M Suuruse miinus lõpmatus ümbrust nimetat...

Matemaatika → Matemaatiline analüüs
246 allalaadimist
thumbnail
4
xlsx

Valemileht

MATEMAATIKA GÜMNAASIUMILE valemid TRIGONOMEETRIA Sin x Cos Tan x x 0o 0 1 0 30o 0,5 45o 1 60o 0,5 90o 1 0 puudub VIETE'I TEOREEM ARITMEETILINE JADA kui a = 1, siis an = a1 + (n-1)d x1 + x2 = - b x1 * x2 = c TULETISED (u±v)'=u' ± v' GEOMEETRILINE n­1 JADA (uv)' u'v + uv' an = a1q Hääbuv geomeetriline jada [u(v[x])]'=u'(v[x])v'[x] NEWTONI BINOOMVALEM VEKTORID KOMBINATOORIKA Kui A(x1;y1) ja B(x2;y2), siis Permutatsioonide arv Vektor =(x2-x1;y2-y1) Vektori pikkus: Kombinatsioonide arv . Skalaarkorrutis: . Kui kaks ...

Matemaatika → Matemaatika
240 allalaadimist
thumbnail
3
rtf

Matemaatika valemid

Põhikooli matemaatika abi Tasapinnalised kujundid Ruut Diagonaal: Pindala: S = a2 Ümbermõõt: P = 4·a Ruudu kõik küljed on võrdsed ja nurgad täisnurgad. Ristkülik Diagonaal: Pindala: S = a · b Ümbermõõt: P = 2(a + b) Ristkülikuks nimetatakse rööpkülikut, mille kõik nurgad on täisnurgad. Romb + = 180º Pindala: S = a · h Ümbermõõt: P = 4·a Rööpkülik + = 180º Pindala: S = a · h Ümbermõõt: P = 2(a + b) Rööpkülikuks nimetatakse nelinurka, mille vastasküljed on paralleelsed. Kolmnurk + + = 180º Pindala: Ümbermõõt: P = a + b + c Võrdkülgne kolmnurk Kõrgus: Pindala: Ümbermõõt: P = 3 · a Täisnurkne kolmnurk ...

Matemaatika → Matemaatika
80 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun