Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Matemaatiline analüüs kontrolltöö (1)

3 KEHV
Punktid

Lõik failist

Mitme muutuja funktsioon. Piirväärtus. Diferentseerimine

Mitme muutuja funktsioon


Mitme muutuja funktsiooni üldkuju:

Kahe puntki vaheline kaugus:
Puntkide
ja
vaheliseks kauguseks nimetatakse reaalarvu .
Punkti ε-ümbrus: Olgu
ε mingi
arv. Punkti
ε-ümbruseks
nim. kõigi selliste punktide
hulka, mille kaugused punktist P0
on väiksemad kui ε,
s.t
.
Hulga sisepunkt:
Punkti
nim. hulga D
sisepunktiks kui leidub punkti P0
selline ε-ümbrus,
mis kuulub hulka D,
s.t .
Hulga rajapunkt:
Punkti P0
nim. hulga D
rajapunktiks, kui igas punkti P0
Matemaatiline analüüs kontrolltöö #1 Matemaatiline analüüs kontrolltöö #2 Matemaatiline analüüs kontrolltöö #3 Matemaatiline analüüs kontrolltöö #4
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 4 lehte Lehekülgede arv dokumendis
Aeg2013-01-19 Kuupäev, millal dokument üles laeti
Allalaadimisi 119 laadimist Kokku alla laetud
Kommentaarid 1 arvamus Teiste kasutajate poolt lisatud kommentaarid
Autor Raudo Õppematerjali autor

Sarnased õppematerjalid

thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m

Matemaatiline analüüs ii
thumbnail
7
docx

Matemaatiline analüüs 1 teooria

1. Mitme muutuja funktsiooni definitsioon. Mitme muutuja funktsiooni määramispiirkonna definitsioon (kahe ja kolme muutuja funktsiooni määramispiirkond). Erinevad piirkonnad, piirkonna rajajoon. Tõkestatud piirkond. Kui kahe teineteisest sõltumatu muutuva suuruse x ja y igale väärtuspaarile (x;y) mingisugusest nende muutumispiirkonnast D vastab suuruse z väärtus, siis öeldakse, et z on kahe sõltumatu muutuja x ja y funktsioon, mis on määratud piirkonnas D. Kahe muutuja funktsiooni z märgitakse kujul z=f(x,y). Argumentide x ja y väärtuspaaride (x;y) hulka, mille puhul funktsioon z=f(x,y) on määratud, nim. selle funktsiooni määramispiirkonnaks. Kui x ja y iga väärtuspaari kujutada xy-tasapinna punktina M(x;y), siis funktsiooni määramispiirkonda kujutab teatud punktide hulk tasapinnal. Ka seda punktide hulka nim. funktsiooni määramispiirkonnaks. Funktsiooni määramispiirkonnaks võib olla ka kogu tasapind. Edaspidi tegeleme peamiselt niisuguste piirkondadega, m

Matemaatiline analüüs 1
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

piirkonnas A, kui F `(x) = f(x) iga x A korral. Funktsiooni algfunktsiooni leidmist nimetatakse integreerimiseks. 31. Määramata integraal - avaldist F(x) + c , kus F(x) on funktsiooni f(x) mingi algfunktsioon ja c R on suvaline konstant, nimetatakse funktsiooni f(x) määramata integraaliks. 32. Ratsionaalfunktsioon - ratsionaalfunktsiooniks nimetatakse funktsiooni kujul: y = Fn(x) / Gm(x) kus Fn(x) ja Gm(x) on n ja m järku polünoomid. 33. Polünoom - hulkliige. Lõpliku summa näol esinev matemaatiline avaldis 34. Lihtmurdratsionaalfunktsioon - kui murru lugeja aste (polünoomi järk) on väiksem murru nimetaja astmest ( n < m) , siis nim. seda funktsiooni lihtmurdratsionaalfunktsiooniks. 35. Liigmurdratsionaalfunktsioon - kui murru lugeja aste on suurem murru nimetaja astmest ( n > m ) on tegu liigmurdratsionaalfunktsiooniga. 36. Riemanni integraal - piirväärtust lim , 0 = lim f ( i) x i , 0 ( summa n kuni i = 1) nimetatakse funktsiooni f (x) määratud integraaliks e

Matemaatika
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x ja dy:= y, nimetatakse funktsiooni f(x,y)

Matemaatiline analüüs 2
thumbnail
8
pdf

Matemaatiline analüüs II 2. kollokviumi spikker

1. Mitmemuutuja funktsiooni lokaalsete ekstreemumite mõisted. Statsionaarne punkt. Kriitiline punkt. piirkonna D rajajoon. Eeldame, et piirkonnas D on täidetud tingimus f(x,y)>=g(x,y). Kahekordse integraali 𝑥 = 𝜌 𝑐𝑜𝑠𝜑 Mitmemuutuja funktsiooni lokaalse ekstreemumi tarvilik tingimus. Definitsioon 1. Öeldakse, et kahe omaduse tõttu ∬𝐷[𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)]𝑑𝑥𝑑𝑦 = ∬𝐷 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 − ∬𝐷 𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦. Mõlemad kahekordsed 𝑦 = 𝜌 𝑠𝑖𝑛𝜑 muutuja funktsioonil on punktis P1(x1, y1) lokaalne maksimum, kui sellel punktil leidub niisugune ümbrus tei

Matemaatiline analüüs 2
thumbnail
4
docx

MathCAD kordamisküsimused

Kordamisküsimused 1. Mitme muutuja funktsiooni ekstreemumid Lokaalsed ekstreemumid (tarvilikud ja piisavad tingimused ekstreemumite leidmiseks) o Lokaalse ekstreemumi tarvilikud tingimused: Olgu funktsioonil f punktis A(a1;...; an) lokaalne ekstreemum ning eksisteerigu gradient (f )(A). Siis A on funktsiooni f statsionaarne punkt st (f )(A) = 0. o piisavad tingimused: Lokaalse ekstreemumi piisavad tingimused antakse tavaliselt teist järku tuletiste abil. Selliseid tingimusi nimetatakse ka teist järku tingimusteks (ingl. second order conditions), eristamaks neid esimest järku tarvilikest tingimustest. Globaalsed ekstreemumid o u u x, y, z,... x, y, z,... D . Öeldakse, et funktsioonil f on kohal Olgu antud funktsioon P0 D globaalne miinimum, kui P D korral kehtib võrratus f P0 f P

MathCAD
thumbnail
3
doc

Matemaatilised mõisted ja definitsioonid

piirkonnas A, kui F `(x) = f(x) iga x A korral. Funktsiooni algfunktsiooni leidmist nimetatakse integreerimiseks. 31. Määramata integraal- avaldist F(x) + c , kus F(x) on funktsiooni f(x) mingi algfunktsioon ja c R on suvaline konstant, nimetatakse funktsiooni f(x) määramata integraaliks. 32. Ratsionaalfunktsioon- ratsionaalfunktsiooniks nimetatakse funktsiooni kujul: y = Fn(x) / Gm(x) kus Fn(x) ja Gm(x) on n ja m järku polünoomid. 33. Polünoom- hulkliige. Lõpliku summa näol esinev matemaatiline avaldis 34. Lihtmurdratsionaalfunktsioon- kui murru lugeja aste (polünoomi järk) on väiksem murru nimetaja astmest ( n < m) , siis nim. seda funktsiooni lihtmurdratsionaalfunktsiooniks. 35. Liigmurdratsionaalfunktsioon- kui murru lugeja aste on suurem murru nimetaja astmest ( n > m ) on tegu liigmurdratsionaalfunktsiooniga. 36. Riemanni integraal- piirväärtust lim , 0 = lim f ( i) x i , 0 ( summa n kuni i = 1) nimetatakse funktsiooni f (x) määratud integraaliks e

Matemaatiline analüüs
thumbnail
20
docx

Kõrgem matemaatika II eksamimaterjal

Vektorruum Mittetühja hulka V nimetatakse vektorruumiks üle reaalarvude hulga R, kui sellel hulgal on defineeritud lineaarsed tehted: hulga V elementide liitmine ja korrutamine skalaaridega nii, et on täidetud järgmised tingimused: hulk V on kinnine elementide liitmise suhtes ja hulk V on kinnine skalaariga korrutamise suhtes Vektorruumi 1) leidub nullelement omadused 2) iga elemendi a korral leidub tema vastandelement ­a 3) (a+b)+c=a+(b+c) 4) a+b=b+a 5) k(a+b)=ka+kb 6) (k+l)a=ka+la 7) (kl)a=k(la) 8) 1a=a Vektorruumi Vektorruumi alamruumiks nimetatakse vektorruumi V mittetühja alamhulka U, alamruum kui U on vektorruumi V tehete suhtes vektorruum üle reaalarvude hulga R Lineaarkate

Kõrgem matemaatika ii




Kommentaarid (1)

Zahir profiilipilt
Zahir: ok
18:56 26-08-2015



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun