Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Planimeetria valemid (7)

4 HEA
Punktid

Lõik failist

PLANIMEETRIA
Kolmnurk
Kolmnurga
sisenurkade summa
on ,
Kolmnurga
kõrgused lõikuvad ühes punktis.
Kolmnurga
nurgapoolitajad lõikuvad kõik ühes punktis, mis on
kolmnurga siseringjoone keskpunktiks (raadius r on keskpunkti kaugus küljest).
Kolmnurga mediaanid (küljepoolitajad) lõikuvad kõik ühes
punktis, mis jaotab iga mediaani suhtes 2:1 vastavast tipust arvates.
Kolmnurga
külgede keskristsirged lõikuvad kõik ühes punktis, mis on
kolmnurga ümberringjoone keskpunktiks (raadius R on
keskpunkti kaugus kolmnurga tipust).
Siinusteoreem :
kolmnurga küljed on võrdelised vastasnurkade siinustega ehk
Koosinusteoreem :
kolmnurga ühe külje ruut on võrdne ülejäänud külgede ruutude summaga , millest on lahutatud nende külgede kahekordne korrutis
samade külgede vahelise nurga koosinusega ehk
Kolmnurga
Planimeetria valemid #1 Planimeetria valemid #2
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2008-12-02 Kuupäev, millal dokument üles laeti
Allalaadimisi 357 laadimist Kokku alla laetud
Kommentaarid 7 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Oliver Nuut Õppematerjali autor
planimeetria kolmnurk,rööpkülik,rink jne. valemid

Sarnased õppematerjalid

thumbnail
6
doc

Planimeetria kordamine

PLANIMEETRIA KORDAMINE NELINURGAD RÖÖPKÜLIK Vastasküljed on paralleelsed ja võrdsed Vastasnurgad on võrdsed Diagonaalid poolitavad teineteist Diagonaal jaotab rööpküliku kaheks pindvõrdseks kolmnurgaks Lähisnurkade summa on 180º ( Diagonaalide ruutude summa on võrdne külgede ruutude summaga: d 12 + d 22 = 2 a 2 + b 2 ) Ümbermõõt. P = 2( a + b ) Pindala: S = ah S = a b sin ROMB On võrdsete külgedega rööpkülik, seega on rombil kõik rööpküliku omadused. Lisaks on rombi diagonaalid risti ja poolitavad rombi nurgad, Rombi kõrgused on pikkuselt võrdsed. 1 Rombi diagonaalide lõikepunkt on siseringjoone keskpunkt r = h 2 d 12 + d 22 = 4a 2 Ümbermõõt: P = 4a Pindala: S = a h

Matemaatika
thumbnail
6
doc

Planimeetria

PLANIMEETRIAKURSUSE KORDAMINE GÜMNAASIUMI LÕPUEKSAMIKS. KOLMNURGAD 1. Kolmnurga sisenurkade summa on sirgnurk + + = 180 o 2. Siinusteoreem a b c = = = 2R sin sin sin 2. Koosinusteoreem a 2 = b 2 + c 2 - 2bc cos b 2 = a 2 + c 2 - 2ac cos c 2 = a 2 + b 2 - 2ab cos 4. Pindala valemid. ch ab sin a +b +c S= ; S= ; S = p ( p - a )( p -b)( p -c ) ; p= ; 2 2 2 abc S = pr ; S= 4R 5. Kolmnurga kõrgus (h on ristlõik külje ja selle vastastipu vahel) , mediaan (m on

Matemaatika
thumbnail
12
doc

PLANIMEETRIAKURSUSE KORDAMINE GÜMNAASIUMI LÕPUEKSAMIKS.

PLANIMEETRIAKURSUSE KORDAMINE GÜMNAASIUMI LÕPUEKSAMIKS. KOLMNURGAD 1. Kolmnurga sisenurkade summa on sirgnurk       180 o 2. Siinusteoreem a b c    2R sin  sin  sin  2. Koosinusteoreem a 2  b 2  c 2  2bc cos  b 2  a 2  c 2  2ac cos  c 2  a 2  b 2  2ab cos  4. Pindala valemid. ch ab sin  abc S ; S ; S  p ( p  a )( p  b)( p  c) ; p ; 2 2 2 abc S  pr ; S 4R 5. Kolmnurga kõrgus (h on ristlõik külje ja selle vastastipu vahel) , mediaan (m on

Matemaatika
thumbnail
8
docx

ROMBI, RÖÖPKÜLIKU, KOLMNURGA, TRAPETSI, RISTKÜLIKU JA RUUDU MÕISTED

1. Teoreemid ja mõisted kolmnurgast 2. Mediaanlõik - Kolmnurga mediaaniks nimetatakse elementaargeomeetrias kolmnurga tipust vastaskülje keskpunkti tõmmatud lõiku või selle pikkust. Kolmnurgal on kolm mediaani. Kõik nad lõikuvad ühes punktis, mida nimetatakse mediaanide lõikepunktiks. Jaotab tipupoolse osa suhtes alumise osaga 2:1. 3. Kesklõik - Lõiku, mis ühendab kolmnurga kahe külje keskpunkte, nimetatakse kolmnurga kesklõiguks. Kolmnurga kesklõik on paralleelne kolmnurga ühe küljega ja võrdub poolega sellest küljest.Nende ristumiskoht on kolmnurga ümberringjoone 4. Nurgapoolitaja – nurgapoolitajaks nimetatakse tipust lähtuvat kiirt, mis poolitab nurga kaheks võrdseks nurgaks. Nende ristumiskoht on siseringjoone keskpunkt. 5. Hüpotenuus - Hüpotenuus on täisnurga vastaskülg täisnurkses kolmnurgas. 6. Kolmnurga nurkade summa on 180 kraadi. 7. Kolmnurgal on kolm nurka ja kolm külge. 8. Täisnurkne k

Geomeetria
thumbnail
5
doc

Planimeetria 3

PLANIMEETRIA III 1.Leida täisnurkse kolmnurga küljed, kui kolmnurga ümbermõõt on 12 cm ja kaatetite vahe on 1 cm. 2. Arvutada täisnurkse kolmnurga kaatetid, kui täisnurga poolitaja jaotab hüpotenuusi lõikudeks, mille pikkusedon 15 cm ja 20 cm. 3.Täisnurkse kolmnurga kaatetid suhtuvad nagu 5:6 ja hüpotenuus on 122 cm. Arvuta lõigud, milleks kõrgus jaotab hüpotenuusi. 4. Täisnurkse kolmnurga kaatetid on 8 cm ja 6 cm. Täisnurga tipust on tõmmatud ristlõik hüpotenuusile, leia selle pikkus. 5. Täisnurkse kolmnurga kaatetid on 16 cm ja 12 cm. Arvutada sise- ja ümberringjoone raadius. 6. Täisnurkse kolmnurga kaatetid on 15 dm ja 20 dm. Arvutada siseringjoone keskpunkti kaugus hüpotenuusioe joonestatud kõrgusest. 7. Täisnurkse kolmnurga üks kaatet on 15 cm ja siseringjoone raadius 3 cm. Leia selle kolmnurga pindala. 8. Täisnurkse kolmnurga siseringjoon jaotab puutepunktis hüpotenuusi osadeks 5 cm ja 12 cm. Arvutada kolmnurga kaatetid

Geomeetria
thumbnail
5
doc

planimeetria-3 AnnaAbi

PLANIMEETRIA III 1.Leida täisnurkse kolmnurga küljed, kui kolmnurga ümbermõõt on 12 cm ja kaatetite vahe on 1 cm. 2. Arvutada täisnurkse kolmnurga kaatetid, kui täisnurga poolitaja jaotab hüpotenuusi lõikudeks, mille pikkusedon 15 cm ja 20 cm. 3.Täisnurkse kolmnurga kaatetid suhtuvad nagu 5:6 ja hüpotenuus on 122 cm. Arvuta lõigud, milleks kõrgus jaotab hüpotenuusi. 4. Täisnurkse kolmnurga kaatetid on 8 cm ja 6 cm. Täisnurga tipust on tõmmatud ristlõik hüpotenuusile, leia selle pikkus. 5. Täisnurkse kolmnurga kaatetid on 16 cm ja 12 cm. Arvutada sise- ja ümberringjoone raadius. 6. Täisnurkse kolmnurga kaatetid on 15 dm ja 20 dm. Arvutada siseringjoone keskpunkti kaugus hüpotenuusioe joonestatud kõrgusest. 7. Täisnurkse kolmnurga üks kaatet on 15 cm ja siseringjoone raadius 3 cm. Leia selle kolmnurga pindala. 8. Täisnurkse kolmnurga siseringjoon jaotab puutepunktis hüpotenuusi osadeks 5 cm ja 12 cm. Arvutada kolmnurga kaatetid

Kategoriseerimata
thumbnail
20
pdf

Geomeetria/Planimeetria.

KORDAMINE RIIGIEKSAMIKS VI teema Geomeetria PLANIMEETRIA Tasandilised kujundid ja nendega seotud valemid. Ristkülik d b S  ab P  2a  b  d  a2  b2 a a Ruut d S  a2 a P  4a

Geomeetria
thumbnail
54
doc

Valemid ja mõisted

1 tan = = cot , tan 1 tan = = cot , kui + = . tan 2 Kui on antud teravnurk , siis selle täiendusnurk on - ja kehtivad valemid: 2 17 sin - = cos , 2 cos - = sin , 2 1 tan - = .

Matemaatika




Kommentaarid (7)

mmiku17 profiilipilt
Mihkel J: sain vajaliku info kätte
20:04 23-09-2013
palunabi123 profiilipilt
palunabi123: Liiga pealiskaudne
23:32 26-09-2011
marjee profiilipilt
marjee: väga asjalik
10:16 04-03-2010



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun