Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

8. klassi raudvara: PTK 4 (1)

5 VÄGA HEA
Punktid

Lõik failist

Vasakule Paremale
8-klassi raudvara-PTK 4 #1 8-klassi raudvara-PTK 4 #2 8-klassi raudvara-PTK 4 #3 8-klassi raudvara-PTK 4 #4 8-klassi raudvara-PTK 4 #5 8-klassi raudvara-PTK 4 #6 8-klassi raudvara-PTK 4 #7 8-klassi raudvara-PTK 4 #8 8-klassi raudvara-PTK 4 #9 8-klassi raudvara-PTK 4 #10 8-klassi raudvara-PTK 4 #11 8-klassi raudvara-PTK 4 #12
Punktid 100 punkti Autor soovib selle materjali allalaadimise eest saada 100 punkti.
Leheküljed ~ 12 lehte Lehekülgede arv dokumendis
Aeg2011-05-24 Kuupäev, millal dokument üles laeti
Allalaadimisi 139 laadimist Kokku alla laetud
Kommentaarid 1 arvamus Teiste kasutajate poolt lisatud kommentaarid
Autor TA17 Õppematerjali autor
Sisaldab üle 20 punkti: vasakul pool on ülesande andmed ja kirjeldus, kuidas lahendada, paremal pool üks näidis koos lahendusega

Sarnased õppematerjalid

thumbnail
8
ppt

Funktsioon

Kahe tundmatuga lineaarvõrrand TSG Võrrand · Kahe tundmatuga lineaarvõrrand sisaldab kahte esimeses astmes olevat tundmatut · Üldkuju: ax + by = c · x ja y on tundmatud · a, b ja c on arvud ehk võrrandi kordajad · Näiteks 2x ­ 3y = 5 -7x + 5y = -12 Võrrandi lahend · Võrrandi lahendiks on järjestatud arvupaar, mille korral võrdus on tõene · Selliseid arvupaare on lõpmata palju Näiteks: võrrandi 2x ­ y = 5 lahendiks on arvupaarid (2; -1), (5; 5), (4; 3), (1; -3) jne. Sirge võrrand · Kahe tundmatuga lineaarvõrrandi graafiliseks kujutiseks on sirge · Seepärast nimetatakse kahe tundmatuga lineaarvõrrandit sirge võrrandiks · Selle sirge iga punkti koordinaadid on selle võrrandi lahendiks Kahe tundmatuga lineaarvõrrandisüsteem · Võrrandisüsteem koosneb kahest kahe tundmatuga lineaarvõrrandist · Võrrandisüsteemi lahendiks on kahe sirge lõikepunkti koordinaadid

Matemaatika
thumbnail
8
pdf

Determinandid gümnaasiumiõpikus

DETERMINANDI MÕISTE. KAHEREALISE DETERMINANDI Avaldanud esimesest võrrandist x-i ja asendanud saadud tulemuse teise võr- KASUTAMINE VÕRRANDISÜSTEEMIDE LAHENDAMISEL randisse, saame c1 b1 y Paljude sisult erinevate probleemide lahendamine viib ühe ja sama seaduse a1 x b1 y c1 x , kui a1 0. järgi koostatud avaldisteni. Sel juhul on otstarbekas uurida nende avaldiste a1 üldisi omadusi. c b y° a2 ¡¡ 1 1 ±± b2 y c2 a1 korrutame võrrandi pooli a1-ga Üheks selliseks av

Matemaatika
thumbnail
12
doc

Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega

Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine Lineaarvõrrandisüsteemi lahendamine graafiliselt: Võtame näiteks võrrandisüsteemi: Tuleta meelde! Viies liikme teisele poole x - 2 y = 1 võrdusmärki, muutub tema märk vastupidiseks. Tuleta meelde! x-i ees käib alati 1, kuid seda tavaliselt ei kirjutata. 2 x + 2 y = 8 1. Avaldame y mõlematest võrranditest x - 2 y = 1 - 2 y = 1 - x y = 1 - x : (-2) y

Matemaatika
thumbnail
1
odt

Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine liitmisvõttega

Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine LIITMISVÕTTEGA Liitmisvõtte idee seisneb ühe muutuja kõrvaldamises ehk elimineerimises võrrandite liitmise või lahutamise kaudu ning tulemuseks saame ühe muutujaga võrrandi. Sealt on juba lihtne vastav muutuja väärtus leida. Teise muutuja väärtuse saame, kui asendame leitud muutuja väärtuse ühte esialgsetest võrranditest. x+2y=11 *(5) 5x3y=3 1.) Viin võrrandi normaalkujule. 5x10y=55 2.) Liidan võrrandid. 5x3y=3 3.) Lahendan saadud võrrandid. 13y=52 :(13) 4.) Arvutan teise tundmatu väärtuse. Y=4 5.) Teen kontrolli. x=114*2 6.) Kirjutan vastuse.

Matemaatika
thumbnail
72
pptx

Avaldiste teisendusi. Lineaarvõrrand

3. AVALDISTE TEISENDUSI. LINEAARVÕRRAN D Koostajad: Gerli Savila, Janek Käsper, Erik Mandel, Marek Käsper. 3.1 KORRUTISE LIHTSUSTAMINE • Korrutamise vahetuvuse ja ühenduvuse seaduste kohaselt võetakse kõik arvulised tegurid omaette ja tähelised tegurid omaette rühma. 5 x a x (-3) x b x c = -3 x 5 x abc = -15abc • Kordaja 1 jäetakse korrutises kirjutamata. abc • Kordaja -1 asemele kirjutatakse ainult miinusmärk. - abc ÜLESANNE 1: LIHTSUSTA KORRUTIS JA LEIA KORDAJA 1) 5a●(-3)bc= 2) 4x●(-2)= 3) 10●(-a)●0.1= 4) 5a● (-0.2)●b = 5) 3,5●(-2x) ●(- 1)= ÜLESANNE 1: VASTUSED • 1) VASTUS: 5a●(-3)bc=-15abc , kordaja -15 • 2) VASTUS: 4x●(-2)=-8x , kordaja -8 • 3) VASTUS: 10●(-a)●0.1=-a , kordaja -1 • 4) VASTUS: 5a● (-0.2)●b =-ab , kordaja -1 • 5) VASTUS: 3,

Matemaatika
thumbnail
40
doc

Keskkooli matemaatika raudvara

KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ­...........................................................................................5 Täisarvude hulk Z.................................................................................................................5 Murdarvu

Matemaatika
thumbnail
18
pdf

8. klassi raudvara: PTK 6

6.ptk Ruutvõrrand 8.klass Õpitulemused Näited 1.Arvu ruut - kahe võrdse teguri korrutis Ül.1262,1263 2 a a=a ; mistahes ratsionaalarvu ruut on Leida arvu ruut taskuarvuti abil. mittenegatiivne 2 2 2 2 15 =225; 28 =784; 41 =1681; 57 =3249 Lihtsustada avaldis ja arvutada. 2 2 2 2 2,4 2 =(2,4 2) =4,8 =23,04 NB ruutjuure pöördtehe; saab kasutada 2 näiteks ruudu ja ringi pindala arvutamisel =3,5 =12,25 2 2 2 2 2 (-4,5) 4 -8 (-1,5) =(-4,5 4) -(-8

Matemaatika
thumbnail
22
ppt

Võrrandisüsteemide koostamine tekstülesannete põhjal I osa

Võrrandisüsteemide koostamine tekstülesannete põhjal I osa © T. Lepikult, 2003 Leida kaks arvu, ülesanne 1 Ülesanne 1 Kahe arvu korrutis on 30, nende arvude summa 11. Leida need arvud. Lahendus Seda tüüpi ülesannetes vaadeldakse otsitavaid arve tundmatutena ja ülesande tingimuste põhjal tuletatakse võrrandisüsteem tundmatute leidmiseks. Tähistame esimese arvu sümboliga x ja teise sümboliga y. Tingimusest, et arvude korrutis on 30, saame esimese võrrandi: x y = 30 Ülesanne 1 (2) Lahendus jätkub ... Tingimusest, et arvude summa on 11, saame teise võrrandi: x + y = 11. Saadud kaks võrrandit moodustavad võrrandisüsteemi tundmatute x ja y määramiseks: x y = 30, x + y = 11. NB! Võrrandisüsteem ei ole lineaarne (kuna esimeses võrrandis esineb tundmatute korrutis!). See

Matemaatika




Meedia

Kommentaarid (1)

avevestel profiilipilt
avevestel: VÄGA HÄSTI LAHTI SELETATUD! IGAÜHELE MÕISTETAV.
08:16 24-09-2011



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun